
IBM SDK, Java Technology Edition, Version 6

IBM SDK, Java Technology Edition,
Version 6, Release 0, Modification 1
Supplement

IBM

IBM SDK, Java Technology Edition, Version 6

IBM SDK, Java Technology Edition,
Version 6, Release 0, Modification 1
Supplement

IBM

Note
Before you use this information and the product it supports, read the information in “Notices” on page 177.

Copyright information

This edition of the user guide applies to the IBM SDK, Java Technology Edition, Version 6 (J9 VM 2.6), and to all
subsequent releases, modifications, and Service Refreshes, until otherwise indicated in new editions.

Portions © Copyright 1997, 2017, Oracle and/or its affiliates.

© Copyright IBM Corporation 2011, 2017.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. Overview 1
What's new 1

First release. 2
Service refresh 1 4
Service refresh 2 6
Service refresh 3 7
Service refresh 4 8
Service refresh 5 10
Service refresh 6 11
Service refresh 7 11
Service refresh 8 13
Service refresh 8 fix pack 1 14
Service refresh 8 fix pack 2 14
Service refresh 8 fix pack 3 16
Service refresh 8 fix pack 4 16
Service refresh 8 fix pack 7 17
Service refresh 8 fix pack 15 17
Service refresh 8 fix pack 20 18
Service refresh 8 fix pack 25 18
Service refresh 8 fix pack 30 18
Service refresh 8 fix pack 35 18
Service refresh 8 fix pack 40 19

Chapter 2. Understanding the IBM
Software Developers Kit (SDK) for Java 21
Balanced Garbage Collection policy 21

Region age 21
NUMA awareness 22
Partial Garbage Collection 22
Global Mark Phase 24
When to use the Balanced garbage collection
policy 25

Chapter 3. Migrating from earlier IBM
SDK or runtime environments. 29

Chapter 4. Hardware and software
requirements 31

Chapter 5. Installation 35
Setting the path 35

Chapter 6. Running Java technology
applications 37
Configuring large page memory allocation 37

Chapter 7. Developing applications . . 43

Chapter 8. Debugging 45

Chapter 9. Performance 47
Garbage collection policy options 47

Tuning implications for the Balanced garbage
collection policy 48
Using more than one JIT compilation thread . . . 48

Chapter 10. Security 51

Chapter 11. Troubleshooting and
support 59
Problem determination 59

JVM messages 59
Application performance issues. 59
Receiving OutOfMemoryError exceptions . . . 60
Tracing the Object Request Broker (ORB) . . . 62

Using diagnostic tools 63
Using dump agents. 63
Using Javadump. 70
Using Heapdump 84
Using the dump viewer 89
Tracing Java applications and the JVM 100
Shared classes diagnostic data 102
Garbage Collector diagnostic data 111
Using the JVMTI 126
Using the DTFJ interface 134

Chapter 12. Reference 137
Command-line options 137

System property command-line options . . . 137
JVM command-line options. 139
Class data sharing command-line options . . . 154
JIT and AOT command-line options 162
Garbage collection command-line options . . . 164

Default settings for the JVM 171
Known issues and limitations 173

Notices 177
Trademarks 179
Terms and conditions for product documentation 179
IBM Online Privacy Statement. 180

Index 181

© Copyright IBM Corp. 2011, 2017 iii

||

||

iv IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

Chapter 1. Overview

This guide contains supplementary information for IBM® SDK, Java™ Technology
Edition, Version 6.

This documentation provides information about additional or changed capabilities
for IBM SDK, Java Technology Edition, Version 6 when the product includes the
IBM J9 2.6 virtual machine. The information provided here is supplementary to the
documentation for IBM SDK, Java Technology Edition, Version 6, which is also
contained in this information center.

To find out which IBM J9 virtual machine (VM) you are using with the IBM SDK
or runtime environment for Java Version 6, type the following command on the
command line:
java -version

The output includes the build level for the IBM J9 VM. In this example, build 2.6
indicates the IBM J9 2.6 virtual machine:
IBM J9 VM (build 2.6, JRE 1.6.0 ...

The information in this guide applies to IBM SDK for z/OS®, Java Technology
Edition, Version 6, Release 0, Modification 1 (product numbers 5655-R31 and
5655-R32), and to any other IBM products that include IBM SDK, Java Technology
Edition, Version 6 with an IBM J9 2.6 virtual machine, such as:
v WebSphere® Application Server V8.0
v WebSphere Application Server V8.5

For late breaking information that is not in this guide, see IBM SDK Java
Technology Edition V6 (J9 VM2.6): Current news.

To determine the service refresh or fix pack level of an installed version, check the
second line of the output from the java -version command. The service refresh
(SR), fix pack (FP) and APAR number is appended to the build string. For
example: Java(TM) SE Runtime Environment (build pmz3160_26sr8fp2ifix-
20141114_01(SR8 FP2+IV66608+IV66375+IX90155+IV66944))

Any new modifications made to this user guide are indicated by vertical bars to
the left of the changes.

What's new
Read about the features and functions available for this release of IBM SDK, Java
Technology Edition, Version 6.

The initial release of IBM SDK, Java Technology Edition, Version 6 (J9 VM 2.6)
provides many new features and capabilities, when compared to IBM SDK, Java
Technology Edition, Version 6.

Service refreshes provide essential maintenance, including IBM fixes, Oracle
Critical Patch Updates (CPUs), and Oracle Synchronized Security Releases (SSRs).
Follow these links for more detailed information:
v IBM fixes

© Copyright IBM Corp. 2011, 2017 1

http://www.ibm.com/support/docview.wss?uid=swg21622956
http://www.ibm.com/support/docview.wss?uid=swg21622956
https://www.ibm.com/developerworks/java/jdk/aix/j626/Java626.fixes.html

v Oracle CPUs and SSRs

In addition to essential maintenance, IBM regularly provides serviceability
improvements and performance enhancements to the code base. The following
topics capture new capabilities and changes to default behavior. For changes to
security providers and utilities, see Chapter 10, “Security,” on page 51.

First release
Read about the features and functions available with the initial release of IBM
SDK, Java Technology Edition, Version 6 (J9 VM 2.6).
v “JVM optimizations”
v “Java Attach API”
v “JIT compilation” on page 3
v “Garbage Collector policy changes”
v “Verbose garbage collection logging” on page 3
v “Shared classes .zip entry caches” on page 3
v “Shared classes JIT data” on page 3
v “Shared class debug area” on page 3
v “Troubleshooting problems with shared class caches” on page 3
v “Shared Cache Utility APIs” on page 3
v “Diagnosing problems with native memory” on page 4
v “JVM message logging ” on page 4

JVM optimizations

New optimizations for Java monitors are available, that are expected to improve
CPU efficiency. New locking optimizations are also implemented that are expected
to reduce memory usage and improve performance. If you experience performance
problems that you suspect are connected to this release, see “Application
performance issues” on page 59.

Java Attach API

Connections to virtual machines through the Java Attach API have a new default
state. For more information, see Chapter 7, “Developing applications,” on page 43.

Garbage Collector policy changes

There is a new garbage collection policy available that is intended for
environments where heap sizes are greater than 4 GB. This policy is called the
Balanced Garbage Collection policy, and uses a hybrid approach to garbage
collection by targeting areas of the heap with the best return on investment. The
policy tries to avoid global collections by matching allocation and survival rates.
The policy uses mark, sweep, compact and generational style garbage collection.
For more information about this policy, see “Balanced Garbage Collection policy”
on page 21.

Other policy changes include changes to the default garbage collection policy, and
the behavior of specific policies and specific policy options. For more information
about these changes, see “Garbage collection policy options” on page 47.

2 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

http://www.ibm.com/developerworks/java/jdk/alerts/

Verbose garbage collection logging

Verbose garbage collection logging has been redesigned. The output from logging
is significantly improved, showing data that is specific to the garbage collection
policy in force. These changes improve problem diagnosis for garbage collection
issues. For more information about verbose logging, see “Verbose garbage
collection logging” on page 111.

JIT compilation

The JIT compiler can use more than one thread to convert method bytecodes into
native code, dynamically. To learn more about this feature, see “Using more than
one JIT compilation thread” on page 48.

Shared classes .zip entry caches

The JVM stores .zip entry caches for bootstrap jar files into the shared cache. A .zip
entry cache is a map of names to file positions used to quickly find entries in the
.zip file. Storing .zip entry caches is enabled by default, or you can choose to
disable .zip entry caching. See “-Xzero” on page 151 for more information.

Shared classes JIT data

You can now store JIT data in the shared class cache, which enables subsequent
JVMs attaching to the cache to either start faster, run faster, or both. For more
information about improving performance with this option, see “Cache
performance” on page 102.

Shared class debug area

A portion of the shared class cache is reserved for storing data associated with
JVM debugging. By storing these attributes in a separate region, the operating
system can decide whether to keep the region in memory or on disk, depending
on whether debugging is taking place. For more information about tuning the class
debug area, see “Cache performance” on page 102.

Troubleshooting problems with shared class caches

A new dump event is available that triggers a dump when the JVM finds that the
shared class cache is corrupt. This event is added for the system, java, and snap
dump agents. For more information about the corrupt cache event, and the default
dump agents, see “Using dump agents” on page 63.

Shared Cache Utility APIs

There are new Java Helper APIs available that can be used to obtain information
about shared class caches. For more information see “Utility APIs” on page 105.

New IBM JVMTI extensions are included, that can search for shared class caches,
and remove a shared class cache. For more information, see “Using the JVMTI” on
page 126.

Chapter 1. Overview 3

Diagnosing problems with native memory

Information about native memory usage is now provided by a Javadump. For
further information, including example output, see “Native memory
(NATIVEMEMINFO)” on page 72.

The Diagnostic Tool Framework for Java (DTFJ) interface has also been modified,
and can be used to obtain native memory information from a system dump or
Javadump. See “Using the DTFJ interface” on page 134.

In addition, you can query native memory usage by using a new IBM JVMTI
extension. The GetMemoryCategories() API returns the runtime environment native
memory use by memory category. For further information about the IBM JVMTI
extension, see “Querying runtime environment native memory categories” on page
126.

JVM message logging

All vital and error messages are now logged by default. However, you can control
the messages that are recorded by the JVM using a command-line option. You can
also query and modify the message setting by using new IBM JVMTI extensions.
For more information about message logging, see “JVM messages” on page 59.

Service refresh 1
This service refresh provides tuning options, and several serviceability
improvements.
v “Compressed references tuning option for z/OS”
v “Balanced Garbage Collection policy change”
v “Subscribing to verbose garbage collection logging with JVMTI extensions” on

page 5
v “Reverting to earlier verbose garbage collection logging” on page 5
v “Improved Java heap shrinkage” on page 5
v “Changes to locale translation files” on page 5
v “Processing system dumps” on page 5
v “System dumps in out-of-memory conditions” on page 5
v “Working with system dumps containing multiple JVMs” on page 5
v “Using the dump viewer in batch mode” on page 6
v “Removing dump agents by event type” on page 6
v “Default assertion tracing during JVM startup” on page 6

Compressed references tuning option for z/OS

A new command-line option is available to override the allocation strategy used by
the 64-bit JVM when running with compressed references enabled. This option
prevents the JVM pre-allocating an area of virtual memory, leaving the operating
system to handle the allocation strategy. For more information, see
“-XXnosuballoc32bitmem (z/OS)” on page 153.

Balanced Garbage Collection policy change

From service refresh 1, you no longer need to use compressed references with the
Balanced Garbage Collection policy.

4 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

Subscribing to verbose garbage collection logging with JVMTI
extensions

New IBM JVMTI extensions are available to turn on, and turn off, verbose garbage
collection logging at run time. For more information, see “Subscribing to verbose
garbage collection logging” on page 132.

Reverting to earlier verbose garbage collection logging

A new command-line option is available to revert to the verbose garbage collection
logging format available in earlier releases of the J9 VM. See the
-Xgc:verboseFormat option in “Garbage collection policy options” on page 47.

Improved Java heap shrinkage

New command-line options are available to control the rate at which the Java heap
is contracted during garbage collection cycles. You can specify the minimum or
maximum percentage of the Java heap that can be contracted at any given time.
For more information, see “-Xgc” on page 164.

Changes to locale translation files

From service refresh 1, changes are made to the locale translation files to make
them consistent with Oracle JDK 6. To understand the differences in detail, see
http://www.ibm.com/support/docview.wss?uid=swg21568667. A system property
is available to revert back to the older locale translation files. See
“-Dcom.ibm.UseCLDR16” on page 138.

Processing system dumps

To analyze system dumps from Windows and z/OS systems, you no longer need
to run the jextract utility to process the dump.

For Linux and AIX® platforms, copies of executable files and libraries are required
along with the system dump. You must still run the jextract utility or the
Diagnostics Collector to collect these files. For more information, see “Processing
system dumps” on page 91.

System dumps in out-of-memory conditions

A system dump is now generated, in addition to a Heapdump and a Javadump,
when an OutOfMemoryError exception occurs in the JVM. The JVM adds a new
default dump agent to enable this functionality, see “Default dump agents” on
page 67. If you want to disable this new functionality, remove the new dump
agent. For more information, see “Removing dump agents” on page 68.

Working with system dumps containing multiple JVMs

For z/OS, service refresh 1 includes an enhanced dump viewer to help you
analyze system dumps. For more information, see “Working with dumps
containing multiple JVMs” on page 99.

Chapter 1. Overview 5

http://www.ibm.com/support/docview.wss?uid=swg21568667

Using the dump viewer in batch mode

For long running or routine jobs, the jdmpview command can now be used in batch
mode. For more information, see “Using the dump viewer in batch mode” on page
92.

Removing dump agents by event type

You can selectively remove dump agents, by event type, with the -Xdump option.
This capability allows you to control the contents of a dump, which can simplify
problem diagnosis. For more information, see “Removing dump agents” on page
68.

Default assertion tracing during JVM startup

Internal JVM assert trace points are now enabled during JVM startup. For more
information, see “Default tracing” on page 100.

Service refresh 2
There are changes to the default heap size on Windows, and several diagnostic
improvements to assist with troubleshooting.
v “Default Java heap size on Windows”
v “Using the JVMTI ClassFileLoadHook with cached classes”
v “Using the dump viewer with compressed files” on page 7
v “Diagnosing problems with locks” on page 7
v “New dump agent trigger” on page 7
v “Determining the Linux kernel sched_compat_yield setting in force” on page 7
v “Receiving OutofMemoryError exceptions” on page 7

Default Java heap size on Windows

From service refresh 2, there is a change in the criteria for setting the default heap
size for the JVM. If you do not specify the maximum Java heap size with the -Xmx
option, the value chosen is half the available memory. The minimum value is 16
MB, and the maximum value is 512 MB. For historical reasons, earlier releases set
the heap size based on physical memory size, with a maximum of 2 GB. However,
in some situations this criteria results in an inappropriately large heap size, which
can lead to out of memory errors. For more information about default settings, see
“Default settings for the JVM” on page 171. To understand more about choosing
your heap size, see How to do heap sizing.

Using the JVMTI ClassFileLoadHook with cached classes

Historically, the JVMTI ClassFileLoadHook or java.lang.instrument agents do not
work optimally with the shared classes cache. Classes cannot be loaded directly
from the shared cache unless using a modification context. Even in this case, the
classes loaded from the shared cache cannot be modified. The
-Xshareclasses:enableBCI suboption improves startup performance without using
a modification context, when using JVMTI class modification. This suboption
allows classes loaded from the shared cache to be modified using a JVMTI
ClassFileLoadHook, or a java.lang.instrument agent. The suboption also prevents
the caching of modified classes in the shared classes cache, while reserving an area
in the cache to store original class byte data for the JVMTI callback. Storing the
original class byte data in a separate region allows the operating system to decide

6 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

whether to keep the region in memory or on disk, depending on whether the data
is being used. You can specify the size of this region, known as the Raw Class Data
Area, using the -Xshareclasses:rcdSize suboption.

For more information about this capability, see “Using the JVMTI
ClassFileLoadHook with cached classes” on page 104. For more information about
the -Xshareclasses suboptions enableBCI and rcdSize, see “-Xshareclasses” on
page 155.

Using the dump viewer with compressed files

You can now specify the -notemp option to prevent the jdmpview tool from
extracting compressed files before processing them. When you specify a
compressed file, the tool detects and shows all core, Java core, and PHD files
within the compressed file. Because of this behavior, more than one context might
be displayed when you start jdmpview. For more information, see “Support for
compressed files” on page 90.

Diagnosing problems with locks

The LOCKS section of the Java dump output now contains information about locks
that inherit from the java.util.concurrent.locks.AbstractOwnableSynchronizer class.

The THREADS section of the Java dump output now contains information about
locks. For more information, see “Understanding Java and native thread details”
on page 78.

New dump agent trigger

Dump agents are now triggered if an excessive amount of time is being spent in
the garbage collector. The event name for this trigger is excessivegc. For more
information, see “Dump events” on page 66.

Determining the Linux kernel sched_compat_yield setting in force

The ENVINFO section of a javacore contains additional information about the
sched_compat_yield Linux kernel setting in force when the JVM was started. For
more information about the ENVINFO javacore output, see “TITLE, GPINFO, and
ENVINFO sections” on page 70.

Receiving OutofMemoryError exceptions

From service refresh 2, an error message is generated when there is an
OutofMemoryError condition on the Java heap.

Service refresh 3
There are improvements to hashing algorithms, which can change the iteration
order of items returned from hash maps. In addition, further information is
provided in a Java dump file to help diagnose problems with direct byte buffers.
v “Improved hashing algorithms” on page 8
v “Diagnosing problems when using Direct Byte Buffers” on page 8

Chapter 1. Overview 7

Improved hashing algorithms

An improved hashing algorithm is available for string keys stored in hashed data
structures. You can adjust the threshold that invokes the algorithm with the system
property, jdk.map.althashing.threshold. This algorithm can change the iteration
order of items returned from hashed maps.

An enhanced hashing algorithm is also used for
javax.xml.namespace.QName.hashCode(). This algorithm can change the iteration
order of items returned from hashed maps. You can control the use of this
algorithm with the system property,
-Djavax.xml.namespace.QName.useCompatibleHashCodeAlgorithm=1.0.

For more information about these system properties, see the Java Diagnostics
Guide 6.

Diagnosing problems when using Direct Byte Buffers

The JVM contains a new memory category for Direct Byte Buffers. You can find
information about the use of this memory category in the NATIVEMEMINFO section of
a Javadump. For more information, see “Native memory (NATIVEMEMINFO)” on
page 72.

Service refresh 4
This service refresh includes support for 1M pageable large pages, and turns off
Java Attach API support by default on z/OS systems. Further serviceability
improvements are also available.
v “Symbol resolution on Linux”
v “Support for 1M pageable large pages”
v “IBM z/OS Language Environment” on page 9
v “Java Attach API support is disabled by default on z/OS” on page 9
v “Default locking behavior is optimized for the Completely Fair Scheduler (CFS)

on Linux” on page 9
v “Disabling hardware prefetch on AIX” on page 9
v “Configuring the initial maximum Java heap size” on page 9
v “Improved diagnostic information about Java threads” on page 10

Symbol resolution on Linux

By default, the JVM delays symbol resolution for each function in a user native
library, until the function is called. Use the -XX:-LazySymbolResolution option to
force the JVM to immediately resolve symbols for all functions in a user native
library when the library is loaded. For more information, see “-XX:[+|-
]LazySymbolResolution (Linux only)” on page 153.

Support for 1M pageable large pages

The JVM now includes support for 1M pageable large pages. You can use the -Xlp
command-line option to instruct the JVM to allocate the Java object heap or the JIT
code cache with 1M pageable large pages.

8 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

The use of 1M pageable large pages for the Java object heap provides similar
runtime performance benefits to the use of 1M nonpageable pages. In addition,
using 1M pageable pages provides options for managing memory that can improve
system availability and responsiveness.

When 1M pageable large pages are used for the JIT code cache, the runtime
performance of some Java applications can be improved.

To take advantage of 1M pageable large pages, the following minimum
prerequisites apply: IBM zEnterprise® EC12 with the Flash Express® feature
(#0402), z/OS V1.13 with PTFs, APAR OA41307, and the z/OS V1.13 Remote
Storage Manager Enablement Offering web deliverable.

For more information, see “-Xlp” on page 146.

IBM z/OS Language Environment®

JVM signal handlers for SIGSEGV, SIGILL, SIGBUS, SIGFPE, SIGTRAP, and for
SIGABRT by default terminate the process by using exit(). If you are using the IBM
z/OS Language Environment, the Language Environment is not aware that the
JVM ended abnormally. Use the
-Xsignal:posixSignalHandler=cooperativeShutdown option to control how the
signal handlers end. For more information, see the Java Diagnostics Guide 6.

Java Attach API support is disabled by default on z/OS

To enhance security on z/OS, support for the Java Attach API is now disabled by
default. For more information, see Chapter 7, “Developing applications,” on page
43.

Default locking behavior is optimized for the Completely Fair
Scheduler (CFS) on Linux

The default locking behavior on Linux systems that are using the CFS in the
default mode (sched_compat_yield=0) is now optimized to improve performance
for most applications. However, if your application uses the Thread.yield() method
extensively, you might see a performance decrease in cases where yielding is not
beneficial. If you see a performance decrease after upgrading the IBM SDK, you
can test whether the new optimizations are negatively affecting your application by
reverting to the behavior of earlier versions. To use the earlier behavior, specify the
following command-line option:
-Xthr:noCfsYield

For more information, see “-Xthr” on page 151.

Disabling hardware prefetch on AIX

A new command-line option, -XXsetHWPrefetch:none, is available for disabling
hardware prefetch on AIX operating systems. This option might help to improve
performance for your Java applications. For more information, see
“-XXsetHWPrefetch:[none|os-default] (AIX only)” on page 154.

Configuring the initial maximum Java heap size

The -Xsoftmx option is now available on Linux, Windows, and z/OS, in addition
to AIX. A soft limit for the maximum heap size can be set by using the

Chapter 1. Overview 9

|

com.ibm.lang.management API. The Garbage Collector attempts to respect the new
limit, shrinking the heap when possible. For more information about this option,
see “-Xsoftmx” on page 168.

If the -Xsoftmx option is used, additional information is added to the MEMINFO
section of a Javadump to indicate the target memory for the heap. See “Storage
Management (MEMINFO)” on page 73.

Improved diagnostic information about Java threads

The THREADS section of a Javadump contains information about threads and stack
traces. For Java threads, the thread ID and daemon status from the Java thread
object is now recorded to help you diagnose problems. For more information, see
“Threads and stack trace (THREADS)” on page 76.

Service refresh 5
Support is now available for 2 GB large pages on z/OS systems. New options are
also provided for tuning and serviceability.
v “Setting default hardware prefetch behavior on AIX”
v “Change to default behavior for -Xcompressedrefs”
v “Support for dynamic machine configuration changes”
v “Support for 2 GB large pages on z/OS”
v “Setting the JIT code cache page size” on page 11
v “New -Xcheck:dump option” on page 11

Setting default hardware prefetch behavior on AIX

A new command-line option, -XXsetHWPrefetch:os-default, is available for
reverting to the default hardware prefetch behavior. Use this option to override a
-XXsetHWPrefetch:none setting that you previously specified on the command line.
For more information, see “-XXsetHWPrefetch:[none|os-default] (AIX only)” on
page 154.

Change to default behavior for -Xcompressedrefs

The -Xcompressedrefs option is now enabled by default when the value of the
-Xmx option is less than or equal to 25 GB, for all 64-bit operating systems other
than z/OS. Use the -Xnocompressedrefs option to revert to the previous behavior.
For z/OS operating systems, or values of -Xmx that are greater than 25 GB,
compressed references are still disabled by default. For more information about
these options, see JVM command-line options in the Java 6 Diagnostics Guide.

Support for dynamic machine configuration changes

A new command-line option, -Xtune:elastic, is available to turn on JVM function
at run time that accommodates dynamic machine configuration changes. For more
information, see “-Xtune” on page 151.

Support for 2 GB large pages on z/OS

On z/OS V1.13 with the RSM Enablement Offering, you can now request the JVM
to allocate the Java object heap with 2 GB nonpageable large pages, by using the
-Xlp:objectheap option. This option is supported only on the 64-bit SDK for z/OS,
and requires certain prerequisites, which are described in the “Configuring large

10 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|

page memory allocation” on page 37 topic. For more information about the RSM
Enablement Offering, see http://www-03.ibm.com/systems/z/os/zos/
downloads/#RSME.

Setting the JIT code cache page size

To be consistent with other platforms, the -Xlp:codecache:pagesize=<size> option
is added for AIX and Linux PPC. As the code cache page size is derived from the
operating system on these platforms, the page size can be altered only by changing
operating system settings. The -verbose:sizes output shows the current page size.
For more information about the -Xlp:codecache:pagesize=<size> option, see
“-Xlp” on page 146.

New -Xcheck:dump option

This option runs AIX and Linux operating system checks during JVM startup.
Messages are issued if the operating system has dump options or limits set that
might truncate system dumps. This option is not supported on Windows or z/OS.

Service refresh 6
There is a change in behavior for the close() method of the FileInputStream. In
addition, this service refresh provides improved diagnostic information to aid
problem determination.
v “File descriptors are now closed immediately”
v “Operating system process information added to a Javadump file”

File descriptors are now closed immediately

There is a change to the default behaviour of the close() method of the
FileInputStream, FileOutputStream, and RandomAccessFile classes. In previous
releases, the default behavior was to close the file descriptor only when all the
streams that were using it were also closed. The new default behavior is to close
the file descriptor regardless of any other streams that might still be using it. You
can revert to the previous default behavior by using a system property, however
this property will be removed in future releases. For more information, see
-Dcom.ibm.streams.CloseFDWithStream in the diagnostic guide for Version 6.

Operating system process information added to a Javadump file

The ENVINFO section contains a new line, 1CIPROCESSID, which shows the ID of the
operating system process that produced the core file.

See “TITLE, GPINFO, and ENVINFO sections” on page 70 for an example.

Service refresh 7
This service refresh provides options for securing Java API for XML (JAXP)
processing. There is also a change to default fonts in z/OS V2.1, and several
serviceability improvements.
v “Controlling JVM signal handling for CTRL_LOGOFF_EVENT” on page 12
v “Securing Java API for XML (JAXP) processing against malformed input” on

page 12
v “Increasing the maximum size of the JIT code cache” on page 12
v “New path in font configuration properties file for z/OS” on page 12

Chapter 1. Overview 11

http://www-03.ibm.com/systems/z/os/zos/downloads/#RSME
http://www-03.ibm.com/systems/z/os/zos/downloads/#RSME

v “Thread CPU time information added to a Javadump file”

Controlling JVM signal handling for CTRL_LOGOFF_EVENT

There is a new system property to control the way the JVM handles a
CTRL_LOGOFF_EVENT signal when the JVM is running as an interactive
Windows service. Setting this property to true prevents the JVM ending when the
signal is received. For more information, see http://publib.boulder.ibm.com/
infocenter/javasdk/v6r0/topic/com.ibm.java.doc.diagnostics.60/diag/appendixes/
cmdline/Dcomibmsignalhandlingignorelogoff.html.

Securing Java API for XML (JAXP) processing against malformed
input

If your application takes untrusted XML, XSD or XSL files as input, you can
enforce specific limits during JAXP processing to protect your application from
malformed data. These limits can be set on the command line by using system
properties, or you can specify values in your jaxp.properties file. You must also
override the default XML parser configuration for the changes to take effect. For
more information about configuring JAXP processing, see the Developing section
of the User Guide for IBM SDK, Java Technology Edition, Version 6.

Increasing the maximum size of the JIT code cache

You can increase the maximum size of the JIT code cache by using a new system
property. You cannot decrease the maximum size below the default value. For
more information, see -Xcodecachetotal in the diagnostic guide for IBM SDK, Java
Technology Edition, Version 6.

New path in font configuration properties file for z/OS

From z/OS V2.1, fonts are provided by the operating system. The paths to the font
files in the $JRE_LIB/fontconfig.properties.src file have changed accordingly. If
you have z/OS V2.1 or later, you do not have to install font packages or edit this
properties file.

If you have z/OS V1.13 or earlier, you must now install font packages in the
/usr/lpp/fonts/worldtype directory, or edit the properties file. For more
information, see http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/
com.ibm.java.doc.user.zos.60/user/zos_fonts.html.

Thread CPU time information added to a Javadump file

For Java threads and attached native threads, the THREADS section contains,
depending on your operating system, a new line: 3XMCPUTIME. This line shows the
number of seconds of CPU time that was consumed by the thread since that thread
was started. For more information, see “Threads and stack trace (THREADS)” on
page 76.

Support included for Windows releases

From this release, support is included for Windows 8.1 and Windows Server 2012
R2.

12 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.doc.diagnostics.60/diag/appendixes/cmdline/Dcomibmsignalhandlingignorelogoff.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.doc.diagnostics.60/diag/appendixes/cmdline/Dcomibmsignalhandlingignorelogoff.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.doc.diagnostics.60/diag/appendixes/cmdline/Dcomibmsignalhandlingignorelogoff.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.doc.user.zos.60/user/zos_fonts.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.doc.user.zos.60/user/zos_fonts.html

Service refresh 8
This service refresh provides new options.
v “JVM signal handling for SIGXFSZ”
v “Thread trace history in Java dump files”
v “Improvements to native memory and thread information in system dumps”
v “Securing Java API for XML (JAXP) processing against malformed input”
v “Improved diagnostic information for debugging wild branch problems”
v “CORBA debug enhancement” on page 14

JVM signal handling for SIGXFSZ

There is a new JVM option that allows the JVM to handle the operating system
signal SIGXFSZ on the Linux platform. This signal is generated when a process
attempts to write to a file that causes the maximum file size ulimit to be exceeded.
If the signal is not handled by the JVM, the operating system ends the process
with a core dump. This option is not enabled by default. For more information, see
“-XX:[+|-]handleSIGXFSZ” on page 153.

Thread trace history in Java dump files

If your Java dump file was triggered by an exception throw, catch, uncaught, or
systhrow event, or by the com.ibm.jvm.Dump API, the dump file contains recent
trace history for the current thread. For more information, see “Trace history for
the current thread” on page 82.

Improvements to native memory and thread information in
system dumps

Additional information is now available in system dumps to help with problem
determination. You can use dump viewer commands to find information about
native memory and information about running threads. For more information, see
“Commands available in jdmpview” on page 94. You can also obtain this
information by using the DTFJ API. For more information, see the DTFJ API
reference.

Securing Java API for XML (JAXP) processing against malformed
input

You can control whether external entities are resolved in an XML document. This
limit can be set on the command line by using a system property, or you can
specify a value in your jaxp.properties file. You must also override the default
XML parser configuration for the changes to take effect. For more information
about configuring JAXP processing, see the Developing section of the User Guide
for IBM SDK, Java Technology Edition, Version 6.

Improved diagnostic information for debugging wild branch
problems

On z/OS and Linux on z Systems™, a new register called Break Event Address
(BEA) is introduced into the GPINFO section of a javadump file, which stores the
address of the last taken branch. The BEA register is useful for debugging wild
branch problems, helping you to reconstruct the control flow paths that lead up to
a crash. For more information about the GPINFO section, see “TITLE, GPINFO, and
ENVINFO sections” on page 70.

Chapter 1. Overview 13

CORBA debug enhancement

The extract() method of IBM ORB-generated Helper classes now throws an
org.omg.CORBA.BAD_OPERATION exception if the type of the supplied Any
object does not match the type that is expected by the Helper class. Previously, this
method threw an org.omg.CORBA.MARSHAL exception or an OutOfMemoryError
exception.

Service refresh 8 fix pack 1
This fix pack extends operating system support and includes minor changes and
fixes to the program code.
v “Support for new operating systems”
v “Change to Zambian currency code symbol”
v “Comparator function”

Support for new operating systems

Support for Red Hat Enterprise Linux (RHEL) 7 is now available with this release.

Change to Zambian currency code symbol

In this release the currency code symbol for Zambia is corrected from “ZMK” to
“ZMW”.

Comparator function

A new system property is available to switch between the Java SE 6 and Java SE
5.0 implementation of the Comparator function. For more information, see
“-Djava.util.Arrays.useLegacyMergeSort” on page 138.

Service refresh 8 fix pack 2
This fix pack includes new command-line options.
v “Specify a directory for all dump file types”
v “Changes to the access permissions for shared class caches (AIX, Linux, and

z/OS operating systems only)”
v “Support for SUSE Linux Enterprise Server (SLES) 12” on page 16

Specify a directory for all dump file types

You can specify a directory to write all types of dump file to by using the new
-Xdump:directory command-line option. This option enhances the existing ability
to specify the dump file location for a particular dump agent type by using the
-Xdump:<agent>:file option. You can use tokens in the directory option in the
same way as in the file option. For more information about the -Xdump option, see
“Using the -Xdump option” on page 63.

Changes to the access permissions for shared class caches
(AIX, Linux, and z/OS operating systems only)

To enhance security, the virtual machine now runs access checks when a process
attempts to access a shared class cache on the AIX, Linux, and z/OS operating
systems. These checks are in addition to the existing checks that are run by the
operating system on file access (for persistent caches) and System V objects (for

14 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

non-persistent caches). The access permissions for persistent shared class caches
(not supported on z/OS) have also been modified, and are now the same as for
non-persistent caches.

After the virtual machine runs the access checks, it grants or denies access as
follows:
v Access is granted to the user that created the cache.
v Access is granted to any other user that is in the same group as the cache

creator, but only if the -Xshareclasses:groupAccess option is specified on the
command line.

v Access is denied in all other cases. For example, even if the cache has read
permission for all, access is denied unless one of the previous points also
applies.

Note: These access checks are not run for shared cache utility options such as
-Xshareclasses:printStats, -Xshareclasses:destroy, or
-Xshareclasses:destroyAll.

The following table summarizes the changes in access permissions for persistent
caches on AIX and Linux operating systems:

Table 1. Changes to the access permissions for persistent shared class caches

Use of the
-Xshareclasses:groupAccess

command-line option at
cache creation Previous access permissions

New access permissions
(now the same as

non-persistent caches)

Not specified -rw-r--r-- R

v Read/write for user, plus
read-only for group and
others

-rw-------

v Read/write for user only

Specified -rw-rw-r--

v Read/write for user and
group, plus read-only for
others

-rw-rw----

v Read/write for user and
group only

You can revert to the previous behavior by specifying the
-Xshareclasses:cacheDir option on the command line. When you use this option,
the virtual machine does not run any access checks, so you must ensure that the
specified directory has suitable access controls. Persistent caches are created with
the same permissions as in the previous release.

These changes are likely to affect users in the following situations:
v A user in a group creates a cache by using the -Xshareclasses:groupAccess

option, then another user in the same group attempts to access the cache
without using the -Xshareclasses:groupAccess option. In this situation, access is
now denied. The second user must specify the -Xshareclasses:groupAccess
option.

v On AIX and Linux only: a user attempts to access a persistent cache that was
created by another user in a different user group, by using the
-Xshareclasses:readonly option. Read-only access for group and other categories
has been removed, so access is now denied. To enable access in this situation,

Chapter 1. Overview 15

create the cache by using the -Xshareclasses:cacheDir option, and set the
permissions on the specified directory to allow read-only access to users who are
outside the group of the cache creator.

For more information about shared classes command-line options, see
“-Xshareclasses” on page 155.

Support for SUSE Linux Enterprise Server (SLES) 12

Support for this operating system is now available on certain platform
architectures. For more information, see Chapter 4, “Hardware and software
requirements,” on page 31.

Service refresh 8 fix pack 3
This fix pack includes new command-line options.
v “Reserving memory space for compressed references”
v “Ability to turn off the ALT-key function”

Reserving memory space for compressed references

A new option is available for securing space in memory for any native classes,
monitors, and threads that are used by compressed references. Setting this option
can help prevent OutOfMemoryError exceptions that might occur if the lowest 4
GB of address space becomes full. For more information, see “-Xmcrs” on page
165.

Ability to turn off the ALT-key function

A new system property is available that can prevent the ALT-key from highlighting
the first menu in the active window. For more information, see
“-Dibm.disableAltProcessor” on page 138.

Note: If your application uses a Windows Look and Feel
(com.sun.java.swing.plaf.windows.WindowsLookAndFeel), this option has no
effect.

Service refresh 8 fix pack 4
This fix pack includes serviceability improvements.
v “Improvements to Java dump output”
v “Improved tracing for the Object Request Broker (ORB)”
v “Support for new operating systems” on page 17

Improvements to Java dump output

The THREADS section now contains more information about Java threads that are
running, which helps with problem determination. For more information about
these changes, see “Threads and stack trace (THREADS)” on page 76.

Improved tracing for the Object Request Broker (ORB)

Component level tracing is now available to improve the debugging of ORB
problems. A new system property allows you to generate trace information for one
or more ORB components, such as DISPATCH or MARSHAL. For more
information about this system property, see

16 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

“-Dcom.ibm.CORBA.Debug.Component” on page 137.

Support for new operating systems

Support for Red Hat Enterprise Linux 7.1 is now available with this release. For a
list of supported operating systems, see Chapter 4, “Hardware and software
requirements,” on page 31.

Service refresh 8 fix pack 7
This fix pack includes serviceability improvements.
v “Invalidating AOT methods in the shared classes cache”
v “Support for Windows 10”

Invalidating AOT methods in the shared classes cache

You can now invalidate failing AOT methods in the shared classes cache to prevent
them being loaded without destroying and re-creating the cache. Three new
-Xshareclasses suboptions are available to find, invalidate, or revalidate these
methods. For more information, see “-Xshareclasses” on page 155.

Support for Windows 10

Microsoft Windows 10 is now supported.

Service refresh 8 fix pack 15
This fix pack includes extended operating system support and serviceability
improvements.
v “Ability to check for the use of large pages”
v “AIX V7.2 support”
v “Support for z/OS V2.2”
v “Support for KVM for z Systems V1.1”
v “New system property -Djdk.xml.max.xmlNameLimit” on page 18

Ability to check for the use of large pages

You can now check whether large pages are obtained for the object heap when
they are requested by the -Xlp:objectheap:pagesize option. The warn suboption
generates a warning message if large pages are not obtained and allows the
process to continue. Alternatively, you can use the strict suboption to generate an
error message and end the process if large pages are not obtained. For more
information, see “-Xlp” on page 146.

AIX V7.2 support

This release now supports AIX V7.2 on POWER7® and later processors.

Support for z/OS V2.2

This release now supports z/OS V2.2.

Support for KVM for z Systems V1.1

Support is now included for this virtualization software on z Systems.

Chapter 1. Overview 17

New system property -Djdk.xml.max.xmlNameLimit

If your application takes untrusted XML, XSD or XSL files as input, you can
enforce specific limits during JAXP processing to protect your application from
malformed data. The -Djdk.xml.max.xmlNameLimit option can be used to limit the
length of XML names in XML documents. For more information about this
property, see Securing Java API for XML processing (JAXP) against malformed
input.

Service refresh 8 fix pack 20
This fix pack includes a serviceability improvement for Windows, as well as Oracle
and IBM fixes to the code base.
v “Improved diagnostic content in Windows Java VM dumps”
v “Change to default behavior for memory protection of a shared classes cache”

Improved diagnostic content in Windows Java VM dumps

Additional dump flags are set in the Java VM when system dumps are triggered
on the Windows operating system. For more information, see: “System dumps” on
page 65.

Change to default behavior for memory protection of a shared
classes cache

On Linux and Windows platforms, new options are available to protect partially
filled pages in the shared classes cache. These options prevent accidental memory
overwrites, which can cause cache corruption. After the startup phase, a VM now
protects partially filled pages by default. For more information about these options
and the default setting, see the mprotect sub option in “-Xshareclasses” on page
155.

Service refresh 8 fix pack 25
This release contains Oracle and IBM fixes to the code base. In addition, the JVM
creates a new shared classes cache, which means that existing shared caches can be
removed.

Changes to the shared classes cache generation number

The format of classes that are stored in the shared classes cache is changed due to
an Oracle security update. As a result, the shared cache generation number is
changed, which causes the JVM to create a new shared classes cache, rather than
re-creating or reusing an existing cache. To save space, all existing shared caches
can be removed unless they are in use by an earlier release. For more information
about deleting a shared classes cache, see “-Xshareclasses” on page 155.

Service refresh 8 fix pack 30
This release contains Oracle and IBM fixes to the code base.

Service refresh 8 fix pack 35
This release contains Oracle and IBM fixes to the code base.

18 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

Service refresh 8 fix pack 40
This release contains Oracle and IBM fixes to the code base.

Chapter 1. Overview 19

20 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

Chapter 2. Understanding the IBM Software Developers Kit
(SDK) for Java

You can read about the components of the SDK in the Diagnostics Guide for IBM
SDK, Java Technology Edition, Version 6. Supplementary information for this
release is included here.

A new Garbage Collection policy is available with this release of the SDK. Read
the following section to learn about this policy and when to use it.

Balanced Garbage Collection policy
The Balanced Garbage Collection policy uses a region-based layout for the Java
heap. These regions are individually managed to reduce the maximum pause time
on large heaps, and also benefit from Non-Uniform Memory Architecture (NUMA)
characteristics on modern server hardware.

The Balanced Garbage Collection policy is intended for environments where heap
sizes are greater than 4 GB. The policy is available only on 64-bit platforms. You
activate this policy by specifying -Xgcpolicy:balanced on the command line.

The Java heap is split into potentially thousands of equal sized areas called
“regions”. Each region can be collected independently, allowing the collector to
focus only on the regions which return the largest amount of memory for the least
processing effort.

Objects are allocated into a set of empty regions that are selected by the collector.
This area is known as an “eden space”. When the eden space is full, the collector
stops the application to perform a Partial Garbage Collection (PGC). The collection
might also include regions other than the eden space, if the collector determines
that these regions are worth collecting. When the collection is complete, the
application threads can proceed, allocating from a new eden space, until this area
is full. This process continues for the life of the application.

From time to time, the collector starts a Global Mark Phase (GMP) to look for more
opportunities to reclaim memory. Because PGC operations see only subsets of the
heap during each collection, abandoned objects might remain in the heap. This
issue is like the “floating garbage” problem seen by concurrent collectors.
However, the GMP runs on the entire Java heap and can identify object cycles that
are inactive for a long period. These objects are reclaimed.

Region age
Age is tracked for each region in the Java heap, with 24 possible generations.

Like the Generational Concurrent Garbage Collector, the Balanced Garbage
Collector tracks the age of objects in the Java heap. The Generational Concurrent
Garbage Collector tracks object ages for each individual object, assigning two
generations, “new” and “tenure”. However, the Balanced Garbage Collector tracks
object ages for each region, with 24 possible generations. An age 0 region, known
as the “eden space”, contains the newest objects allocated. The highest age region
represents a maximum age where all long-lived objects eventually reside. A Partial

© Copyright IBM Corp. 2011, 2017 21

Garbage Collection (PGC) must collect age 0 regions, but can add any other
regions to the collection set, regardless of age.

This diagram shows a region-based Java heap with ages and unused regions:

unused unused 320 1 0

Note: There is no requirement that similarly aged regions are contiguous.

NUMA awareness
The Balanced Garbage Collection policy can increase application performance on
large systems that have Non-Uniform Memory Architecture (NUMA)
characteristics.

NUMA is used in multiprocessor systems on x86 and IBM POWER® architecture
platforms. In a system that has NUMA characteristics, each processor has local
memory available, but can access memory assigned to other processors. The
memory access time is faster for local memory. A NUMA node is a collection of
processors and memory that are mutually close. Memory access times within a
node are faster than outside of a node.

The Balanced Garbage Collection policy can split the Java heap across NUMA
nodes in a system. Application threads are segregated such that each thread has a
node where the thread runs and favors the allocation of objects. This process
increases the frequency of local memory access, increasing overall application
performance.

A Partial Garbage Collection (PGC) attempts to move objects closer to the objects
and threads that refer to them. In this way, the working set for a thread is
physically close to where it is running.

The segregation of threads is expected to improve application performance.
However, there might be some situations where thread segregation can limit the
ability of an application to saturate all processors. This issue can result in slight
fragmentation, slowing performance. You can test whether this optimization is
negatively affecting your application by turning off NUMA awareness using the
-Xnuma:none command-line option.

Partial Garbage Collection
A Partial Garbage Collection (PGC) reclaims memory by using either a
Copy-Forward or Mark-Compact operation on the Java heap.

When the eden space is full, the application is stopped. A PGC runs before
allocating another set of empty regions as the new eden space. The application can
then proceed. A PGC is a “stop-the-world” operation, meaning that all application
threads are suspended until it is complete. A PGC can be run on any set of regions
in the heap, but always includes the eden space, used for allocation since the
previous PGC. Other regions can be added to the set based on factors that include
age, free memory, and fragmentation.

22 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

Because a PGC looks only at a subset of the heap, the operation might miss
opportunities to reclaim dead objects in other regions. This problem is resolved by
a Global Mark Phase (GMP).

In this example, regions A and B each contain an object that is reachable only
through an object in the other region:

A B

If only A or B is collected, one half of the cycle keeps the other alive. However, a
GMP can see that these objects are unreachable.

The Balanced policy can use either a Copy-Forward (scavenge) collector or a
Mark-Compact collector in the PGC operation. Typically, the policy favors
Copy-Forward but can change either partially or fully to Mark-Compact if the
heap is too full. You can check the verbose Garbage Collection logs to see which
collection strategy is used.

Copy-Forward operation

These examples show a PGC operation using Copy-Forward, where the shaded
areas represent live objects, and the white areas are unused:

This diagram shows the Java heap before the Copy-Forward operation:

0 0unused 1

This diagram shows the Java heap during the Copy-Forward operation, where the
arrows show the movement of objects:

0 0unusednew 0 1

This diagram shows the Java heap after the Copy-Forward operation, where region
ages have been incremented:

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 23

unused unusedunused1 2

Mark-Compact operation

These examples show a PGC operation using Mark-Compact, where the shaded
areas represent live objects, and the white areas are unused.

This picture shows the Java heap before the Mark-Compact operation:

02 10

This diagram shows the Java heap during the Mark-Compact operation, where the
arrows show the movement of objects:

02 10

This diagram shows the Java heap after the Mark-Compact operation, where
region ages have been incremented:

unused unused3 21

Global Mark Phase
A Global Mark Phase (GMP) takes place on the entire Java heap, finding, and
marking abandoned objects for garbage collection.

A GMP runs independently between Partial Garbage Collections (PGCs). Although
the GMP runs incrementally, like the PGC, the GMP runs only a mark operation.
However, this mark operation takes place on the entire Java heap, and does not
make any decisions at the region level. By looking at the entire Java heap, the
GMP can see more abandoned objects than the PGC might be aware of. The GMP
does not start and finish in the same “stop-the-world” operation, which might lead

24 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

to some objects being kept alive as “floating garbage”. However, this waste is
bounded by the set of objects that died after a given GMP started.

GMP also performs some work concurrently with the application threads. This
concurrent mark operation is based purely on background threads, which allows
idle processors to complete work, no matter how quickly the application is
allocating memory. This concurrent mark operation is unlike the concurrent mark
operations that are specified with -Xgcpolicy:gencon or -Xgcpolicy:optavgpause.
For more information about the use of concurrent mark with these options, see
../../../../com.ibm.java.doc.diagnostics.60/diag/understanding/
mm_gc_mark_concurrent.html.

When the GMP completes, the data that the PGC process is maintaining is
replaced. The next PGC acts on the latest data in the Java heap.

This diagram shows that the GMP live object set is a subset of the PGC live object
set when the GMP completes:

unused

PGC

GMP

unused 30 01 2

When the GMP replaces the data for use by the PGC operation, the next PGC uses
this smaller live set for more aggressive collection. This process enables the GMP
to clear all live objects in the GMP set, ready for the next global mark:

unused

PGC

GMP

unused 30 01 2 unused

When to use the Balanced garbage collection policy
There are a number of situations when you should consider using the Balanced
garbage collection policy. Generally, if you are currently using the Gencon policy,
and the performance is good but the application still experiences large global
collection (including compaction) pause times frequently enough to be disruptive,
consider using the Balanced policy.

Note: Tools such as the IBM Monitoring and Diagnostic Tools - Garbage Collection
and Memory Visualizer and IBM Monitoring and Diagnostic Tools - Health Center
do not make recommendations that are specific to the Balanced policy.

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 25

Requirements
v This policy is available only on 64-bit platforms. The policy is not available if the

application is deployed on 32-bit or 31-bit hardware or operating systems, or if
the application requires loading 32-bit or 31-bit native libraries.

v The policy is optimized for larger heaps; if you have a heap size of less than 4
GB you are unlikely to see a benefit compared to using the Gencon policy.

Performance implications

The incremental garbage collection work that is performed for each collection, and
the large-array-allocation support, cause a reduction in performance. Typically,
there is a 10% decrease in throughput. This figure can vary, and the overall
performance or throughput can also improve depending on the workload
characteristics, for example if there are many global collections and compactions.

When to use the policy

Consider using the policy in the following situations:

The application occasionally experiences unacceptably long global garbage
collection pause times

The policy attempts to reduce or eliminate the long pauses that can be
experienced by global collections, particularly when a global compaction
occurs. Balanced garbage collection incrementally reduces fragmentation in
the heap by compacting part of the heap in every collection. By proactively
tackling the fragmentation problem in incremental steps, which
immediately return contiguous free memory back to the allocation pool,
Balanced garbage collection eliminates the accumulation of work that is
sometimes incurred by generational garbage collection.

Large array allocations are frequently a source of global collections, global
compactions, or both

If large arrays, transient or otherwise, are allocated so often that garbage
collections are forced even though sufficient total free memory remains, the
Balanced policy can reduce garbage collection frequency and total pause
time. The incremental nature of the heap compaction, and internal JVM
technology for representing arrays, result in minimal disruption when
allocating "large" arrays. "Large" arrays are arrays whose size is greater
than approximately 0.1% of the heap.

Other areas that might benefit

The following situations might also benefit from use of this policy:

The application is multi-threaded and runs on hardware that demonstrates
NUMA characteristics

Balanced garbage collection exploits NUMA hardware when
multi-threaded applications are present. The JVM associates threads with
NUMA nodes, and favors object allocation to memory that is associated
with the same node as the thread. Balanced garbage collection keeps
objects in memory that is associated with the same node, or migrates
objects to memory that is associated with a different node, depending on
usage patterns. This level of segregation and association can result in
increased heap fragmentation, which might require a slightly larger heap.

The application is unable to use all the processor cores on the machine
Balanced garbage collection includes global tracing operations to break

26 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

cycles and refresh whole heap information. This behavior is known as the
Global Mark Phase. During these operations, the JVM attempts to use
under-utilized processor cores to perform some of this work while the
application is running. This behavior reduces any stop-the-world time that
the operation might require.

The application makes heavy use of dynamic class loading (often caused by
heavy use of reflection)

The Gencon garbage collection policy can unload unused classes and class
loaders, but only at global garbage collection cycles. Because global
collection cycles might be infrequent, for example because few objects
survive long enough to be copied to the tenure or old space, there might
be a large accumulation of classes and class loaders in the native memory
space. The Balanced garbage collection policy attempts to dynamically
unload unused classes and class loaders on every partial collect. This
approach reduces the time these classes and class loaders remain in
memory.

When not to use the policy

The Java heap stays full for the entire run and cannot be made larger
The Balanced policy uses an internal representation of the object heap that
allows selective incremental collection of different areas of the heap
depending on where the best return on cost of garbage collection might be.
This behavior, combined with the incremental nature of garbage collection,
which might not fully collect a heap through a series of increments, can
increase the amount of floating garbage that remains to be collected. Floating
garbage refers to objects which might have become garbage, but which the
garbage collector has not been able to immediately detect. As a result, if
heap configurations already put pressure on the garbage collector, for
example by resulting in little space remaining, the Balanced policy might
perform poorly because it increases this pressure.

Real-time-pause guarantees are required
Although the Balanced policy typically results in much better worst-case
pause time than the Gencon policy, it does not guarantee what these times
are, nor does it guarantee a minimum amount of processor time that is
dedicated to the application for any time window. If you require real-time
guarantees, use a real-time product such as the IBM WebSphere Real Time
product suite.

The application uses many large arrays
An array is "large" if it is larger than 0.1% of the heap. The Balanced policy
uses an internal representation of large arrays in the JVM that is different
from the standard representation. This difference avoids the high cost that
the large arrays otherwise place on heap fragmentation and garbage
collection. Because of this internal representation, there is an additional
performance cost in using large arrays. If the application uses many large
arrays, this performance cost might negate the benefits of using the
Balanced policy.

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 27

28 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

Chapter 3. Migrating from earlier IBM SDK or runtime
environments

This migration information applies to IBM SDK, Java Technology Edition, Version 6
(J9 VM 2.6).

If you are migrating from IBM SDK, Java Technology Edition, Version 6, read the
following significant changes:
v Connections to virtual machines through the Java Attach API have a new default

state. For more information, see Chapter 7, “Developing applications,” on page
43.

v Shared class caches are now persistent by default on the AIX operating system.
For more information, see “-Xshareclasses” on page 155.

v The JIT compiler can use more than one thread to convert method bytecodes
into native code, dynamically. If the default number of threads that are chosen
by the JVM is not optimum for your environment, you can configure the
number of threads by setting a system property. For more information, see
“Using more than one JIT compilation thread” on page 48.

v The default garbage collection policy in force is now the Generational
Concurrent garbage collector. For an overview, see ../../../
com.ibm.java.doc.diagnostics.60/diag/understanding/mm_gc_generational.html.

v New optimizations for Java technology monitors are available, that are expected
to improve CPU efficiency. If you experience performance problems that you
suspect are connected to this release, see “Application performance issues” on
page 59.

v Verbose garbage collection logging is redesigned. See “Verbose garbage
collection logging” on page 111.

v The default value for -Xjni:arrayCacheMax is increased from 8096 bytes to 128
KB. Because more memory is used, this change might lead to an out of memory
error.

v If you are migrating from a release of IBM SDK, Java Technology Edition,
Version 6 before service refresh 16 fix pack 1, the currency code symbol for
Zambia is now corrected to the value “ZMW”.

v For Linux on z System platforms, if you are migrating your hardware to IBM
z13 you must install IBM SDK, Java Technology Edition, Version 6 Service
Refresh 8 Fix Pack 3 or later to avoid a performance degradation.

New features and capabilities, which might present planning considerations, can be
found here: “What's new” on page 1.

If you are migrating from the IBM SDK, Java 2 Technology Edition, Version 5.0,
read the additional migration information available for IBM SDK, Java Technology
Edition, Version 6 in the Information Center: http://www.ibm.com/support/
knowledgecenter/SSYKE2_6.0.0/welcome/welcome_javasdk_version.html. A
migration topic is included with each platform-specific user guide.

© Copyright IBM Corp. 2011, 2017 29

|
|
|

|
|
|

http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/welcome/welcome_javasdk_version.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/welcome/welcome_javasdk_version.html

30 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

Chapter 4. Hardware and software requirements

There are changes to the supported hardware and operating system levels when
IBM SDK, Java Technology Edition, Version 6 uses the IBM J9 2.6 virtual machine.
Support is removed for Pentium 3 hardware, older Linux versions, and Windows
2000 server.

Any new updates to these support statements can be found in the Current news
technote.

IBM SDK for AIX

The 32-bit and 64-bit SDKs run on hardware that supports the following platform
architectures:
v IBM POWER 4
v IBM POWER 5
v IBM POWER 6
v IBM POWER 7
v IBM POWER8®

v JS20 blades

The SDKs also run on older System p systems that have a Common Hardware
Reference Platform (CHRP) architecture. To test whether the SDK is supported on a
specific System p system, at the system prompt type:
lscfg -p | fgrep Architecture

The output for a supported platform reads:
Model Architecture: chrp

The following table shows the operating systems supported for each platform
architecture. The table also indicates whether support for an operating system
release was included at the "general availability" (GA) date for the SDK, or at a
specific service refresh (SR) level:

Table 2. AIX environments tested

Operating system 32-bit SDK 64-bit SDK

AIX 6.1.0.4 GA GA

AIX 7.1.0.0 GA GA

AIX 7.2.0.0 SR8 FP15 SR8 FP15

Note: AIX 7.2 is supported only on IBM POWER 7 and later processors.

IBM SDK for Linux

There are a number of distributions provided for the Linux operating system that
support the following platform architectures:
v Intel Architecture, 32-bit (IA-32)

– Pentium 4

© Copyright IBM Corp. 2011, 2017 31

http://www.ibm.com/support/docview.wss?uid=swg21622956
http://www.ibm.com/support/docview.wss?uid=swg21622956

– Pentium Xeon
– Pentium M
– Pentium D and equivalents

v AMD64/EM64T
v IBM POWER 32
v IBM POWER 64
v z Systems 31-bit
v z Systems 64-bit

The following z Systems are supported:
v IBM z13™ 1

v IBM zEnterprise BC12
v IBM zEnterprise EC12
v IBM zEnterprise 196
v IBM zEnterprise 114
v z10™

v IBM System z9® 2

v IBM System z990 2

v IBM System z900 2

v IBM System z800 2

Notes:

1. If you are migrating from EC12, z196, z10, or z9 systems to a z13 system, you
must update to service refresh 8 fix pack 3 to avoid a performance degradation.

2. These products are withdrawn from marketing.

The following table shows the operating systems supported for each platform
architecture. The table also indicates whether support for an operating system
release was included at the "general availability" (GA) date for the SDK, or at a
specific service refresh (SR) or fix pack (FP) level:

Table 3. Linux environments tested

Hardware
IA-32
32-bit

AMD64/EM64T
64-bit POWER 64-bit

z
Systems
31-bit z Systems 64-bit

SDK
address
space

32-bit 32-bit 64-bit 32-bit 64-bit 31-bit 31-bit 64-bit

SLES 10
Service
pack 3

GA GA GA GA GA GA GA GA

SLES 11 GA GA GA GA GA GA GA GA

SLES 12 SR8 FP2 SR8 FP2 SR8 FP2 - - SR8 FP2 SR8 FP2 SR8 FP2

RHEL 5
Update 6

GA GA GA GA GA GA GA GA

RHEL 6 GA GA GA GA GA GA GA GA

RHEL 7 SR8 FP1 SR8 FP1 SR8 FP1 SR8 FP1 SR8 FP1 SR8 FP1 SR8 FP1 SR8 FP1

RHEL 7.1 SR8 FP4 SR8 FP4 SR8 FP4 SR8 FP4 SR8 FP4 SR8 FP4 SR8 FP4 SR8 FP4

32 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

Table 3. Linux environments tested (continued)

Hardware
IA-32
32-bit

AMD64/EM64T
64-bit POWER 64-bit

z
Systems
31-bit z Systems 64-bit

Ubuntu
8.04

GA GA GA - - - - -

Ubuntu
10.04

GA GA GA - - - - -

Ubuntu
12.04

SR8 SR8 SR8 - - - - -

Ubuntu
14-04

SR8 SR8 SR8 - - - - -

Note: On SLES 11 SP1, an intermittent problem is seen that causes the Java process
to end with the error res_query.c:251: __libc_res_nquery: Assertion ̀ hp !=
hp2\’ failed.. If you have a SUSE customer services contract, you can obtain a fix
for this problem by quoting the SUSE bug number 747932.

Note: On an IA-32 platform architecture with SLES 10 service pack 2, the Java
process might hang. This problem is not seen with SLES 10 service pack 3.

IBM SDK for Windows

The 32-bit SDK for Windows runs on hardware that supports the Intel 32-bit
architecture. The following hardware is supported:
v Pentium 4
v Pentium Xeon
v Pentium M
v Pentium D and equivalents

The 64-bit SDK for Windows runs on hardware that supports the AMD64 or
EM64T architecture.

The following table shows the operating systems supported for each platform
architecture. The table also indicates whether support for an operating system
release was included at the "general availability" (GA) date for the SDK, or at a
specific service refresh (SR) level:

Table 4. Windows environments tested

Operating system 32-bit SDK 64-bit SDK

Windows XP service pack 3 GA GA

Windows Vista service pack
2

GA GA

Windows 7 GA GA

Windows 8 SR4 SR4

/Windows 10 SR8 FP7 SR8 FP7

Windows Server 2003 service
pack 1

GA GA

Windows Server 2003 R2 GA GA

Windows Server 2008 service
pack 2

GA GA

Chapter 4. Hardware and software requirements 33

Table 4. Windows environments tested (continued)

Operating system 32-bit SDK 64-bit SDK

Windows Server 2008 R2
service pack 1

GA GA

Windows Server 2012 SR4 SR4

Windows Server 2012 R2 SR7 SR7

IBM SDK for z/OS

The z/OS 31-bit and 64-bit SDKs run on the following z Systems:
v IBM z13
v IBM zEnterprise BC12
v IBM zEnterprise EC12
v IBM zEnterprise 196
v IBM zEnterprise z114
v IBM System z10
v IBM System z9 (see note)
v IBM System z990 (see note)
v IBM System z900 (see note)
v IBM System z800 (see note)

Note: These products are withdrawn from marketing

The following table shows the operating systems supported for each platform
architecture. The table also indicates whether support for an operating system
release was included at the "general availability" (GA) date for the SDK, or at a
specific service refresh (SR) level:

Table 5. z/OS environments tested

Operating system 31-bit SDK 64-bit SDK Comments

z/OS 1.10 GA GA Operating system
support ended 2011.

z/OS 1.11 GA GA Operating system
support ended 2012.

z/OS 1.12 GA GA Operating system
support ended 2014.

z/OS 1.13 SR1 SR1 Operating system
support ends 30
September 2016.

z/OS 2.1 SR8 SR8

z/OS 2.2 SR8 FP15 SR8 FP15

Virtualization software

For information about the virtualization software tested, see Support for
virtualization software.

34 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

Chapter 5. Installation

Read this section to learn about any important installation changes that apply to
IBM SDK, Java Technology Edition, Version 6 with a IBM J9 2.6 virtual machine.

This section provides information that is supplemental to the information about
installing and configuring the IBM SDK, Java Technology Edition, Version 6,
located at http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/
welcome/welcome_javasdk_version.html.

Setting the path
The PATH environment variable you use for IBM SDK, Java Technology Edition,
Version 6, Release 0, Modification 1 must be set correctly.

About this task

On z/OS, the installation directory for IBM SDK, Java Technology Edition, Version
6, Release 0, Modification 1 is different from earlier releases. You must alter your
PATH environment variable so that z/OS can find programs and utilities, such as
javac, java, and javadoc tool from any current directory.

To display the current value of your PATH, type the following command at a
command prompt:
echo
$PATH

Set the PATH environment variable according to your platform:
v For 31-bit z/OS:

export PATH=/usr/lpp/java/J6.0.1/bin:/usr/lpp/java/J6.0.1/bin:$PATH

v For 64-bit z/OS:
export PATH=/usr/lpp/java/J6.0.1_64/bin:/usr/lpp/java/J6.0.1_64/bin:$PATH

© Copyright IBM Corp. 2011, 2017 35

http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/welcome/welcome_javasdk_version.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/welcome/welcome_javasdk_version.html

36 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

Chapter 6. Running Java technology applications

Applications can be started using the launcher or through JNI. Settings are passed
to an application using command-line arguments, environment variables, and
properties files.

The information provded here applies only to this release. General information for
IBM SDK, Java Technology Edition, Version 6 can be found in the User Guides and
Diagnostic Guide that are available in the IBM Information Center:
http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/welcome/
welcome_javasdk_version.html.

Configuring large page memory allocation
You can enable large page support, on systems that support it, by starting the Java
process with the -Xlp option.

Large page usage is primarily intended to provide performance improvements to
applications that allocate a great deal of memory and frequently access that
memory. The large page performance improvements are a result of the reduced
number of misses in the Translation Lookaside Buffer (TLB). The TLB maps a
larger virtual storage area range and thus causes this improvement.

AIX

AIX requires special configuration to enable large pages. For more information
about configuring AIX support for large pages, see

AIX 6.1
http://publib.boulder.ibm.com/infocenter/aix/v6r1/topic/
com.ibm.aix.prftungd/doc/prftungd/large_page_ovw.htm

AIX 7.1
http://publib.boulder.ibm.com/infocenter/aix/v7r1/topic/
com.ibm.aix.prftungd/doc/prftungd/large_page_ovw.htm

The SDK supports the use of large pages only to back the Java object heap shared
memory segments. The JVM uses shmget() with the SHM_LGPG and SHM_PIN
flags to allocate large pages. The -Xlp option replaces the environment variable
IBM_JAVA_LARGE_PAGE_SIZE, which is now ignored if set.

For the JVM to use large pages, your system must have an adequate number of
contiguous large pages available. If large pages cannot be allocated, even when
enough pages are available, possibly the large pages are not contiguous.

To obtain the large page sizes available and the current setting, use the
-verbose:sizes option. Note the current settings are the requested sizes and not
the sizes obtained. For object heap size information, check the -verbose:gc output.

For more information about the -Xlp option, see “-Xlp” on page 146.

© Copyright IBM Corp. 2011, 2017 37

http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/welcome/welcome_javasdk_version.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/welcome/welcome_javasdk_version.html
http://www.ibm.com/support/knowledgecenter/ssw_aix_61/com.ibm.aix.performance/large_page_ovw.htm
http://www.ibm.com/support/knowledgecenter/ssw_aix_61/com.ibm.aix.performance/large_page_ovw.htm
http://www.ibm.com/support/knowledgecenter/ssw_aix_71/com.ibm.aix.performance/large_page_ovw.htm
http://www.ibm.com/support/knowledgecenter/ssw_aix_71/com.ibm.aix.performance/large_page_ovw.htm

Linux

Large page support must be available in the kernel, and enabled, so that the JVM
can use large pages.

To configure large page memory allocation, first ensure that the running kernel
supports large pages. Check that the file /proc/meminfo contains the following
lines:
HugePages_Total: <number of pages>
HugePages_Free: <number of pages>
Hugepagesize: <page size, in kB>

The number of pages available and their sizes vary between distributions.

If large page support is not available in your kernel, these lines are not present in
the /proc/meminfo file. In this case, you must install a new kernel containing
support for large pages.

If large page support is available, but not enabled, HugePages_Total has the value
0. In this case, your administrator must enable large page support. Check your
operating system manual for more instructions.

For the JVM to use large pages, your system must have an adequate number of
contiguous large pages available. If large pages cannot be allocated, even when
enough pages are available, possibly the large pages are not contiguous.
Configuring the number of large pages at boot up creates them contiguously.

Large page allocations only succeed if the user is a member of the group with its
gid stored in /proc/sys/vm/hugetlb_shm_group, or if you run the Java process with
root access. See the huge page support in the Linux kernel documentation for more
information.

If a non-root user needs access to large pages, their locked memory limit must be
increased. The locked memory limit must be at least as large as the maximum size
of the Java heap. The maximum size of the Java heap can be specified using the
-Xmx command-line option, or determined by adding -verbose:sizes and
inspecting the output for the value -Xmx. If pam is not installed, change the locked
memory limit using the ulimit command. If pam is installed, change the locked
memory limit by adding the following lines to /etc/security/limits.conf:
@<large group name> soft memlock 2097152
@<large group name> hard memlock 2097152

Where <large group name> is the name of the group with its gid stored in
/proc/sys/vm/hugetlb_shm_group.

To obtain the large page sizes available and the current setting, use the
-verbose:sizes option. Note the current settings are the requested sizes and not
the sizes obtained. For object heap size information, check the -verbose:gc output.

For more information about the -Xlp option, see For more information about the
-Xlp option, see “-Xlp” on page 146.

Windows

To use large pages, the user that runs the Java process must have the authority to
“lock pages in memory”. To enable this authority, as Administrator go to Control

38 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt

Panel > Administrative Tools > Local Security Policy and then find Local Policies
> User Rights Assignment > Lock pages in memory. Alternatively, run
secpol.msc. Add the user who runs the Java process, and reboot your machine. For
more information, see these websites:
v http://msdn.microsoft.com/en-us/library/aa366720(VS.85).aspx
v http://msdn.microsoft.com/en-us/library/aa366568(VS.85).aspx

For the JVM to use large pages, your system must have an adequate number of
contiguous large pages available. If large pages cannot be allocated, even when
enough pages are available, possibly the large pages are not contiguous.

Large page allocations only succeed if the local administrative policy for the JVM
user has the Lock pages in memory setting enabled.

On Microsoft Windows Vista and later, and Windows 2008 and later, use of large
pages is affected by the User Account Control (UAC) feature. When UAC is
enabled, a regular user (a member of the Users group) can use the -Xlp option as
normal. However, an administrative user (a member of the Administrators group)
must run the application as an administrator to gain the privileges required to lock
pages in memory. To run as administrator, right-click the application and click Run
as administrator. If the user does not have the necessary privileges, the following
error message is produced: System configuration does not support option
'-Xlp'.

To obtain the large page sizes available and the current setting, use the
-verbose:sizes option. Note the current settings are the requested sizes and not
the sizes obtained. For object heap size information, check the -verbose:gc output.

For more information about the -Xlp option, see “-Xlp” on page 146.

z/OS

Sub-options are available to request the JVM to allocate the Java object heap or the
JIT code cache using large pages. These options are shown in the table, together
with the large page sizes supported.

Table 6. Large page size support. Large page sizes supported for -Xlp options

Large page size -Xlp:codecache -Xlp:objectheap -Xlp

2G nonpageable Not supported Supported (64-bit
JVM only)

Supported (64-bit
JVM only)

1M nonpageable Not supported Supported (64-bit
JVM only)

Supported (64-bit
JVM only)

1M pageable Supported (31-bit
and 64-bit JVM)

Supported (31-bit
and 64-bit JVM)

Not supported

For more information about the -Xlp option, see “-Xlp” on page 146.

The following restrictions apply to large page sizes on z/OS:

2G nonpageable

v This page size applies to object heap large pages. The JIT code cache
cannot be allocated in 2GB nonpageable large pages.

v This page size is supported only on the 64-bit SDK for z/OS, not the
31-bit SDK.

Chapter 6. Running Java technology applications 39

|
|
|

||

||||

|||
|
|
|

|||
|
|
|

||
|
|
|
|

|

|

|

http://msdn.microsoft.com/en-us/library/aa366720(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa366568(VS.85).aspx

v This page size requires z/OS V1.13 with PTFs and the z/OS V1.13
Remote Storage Manager Enablement Offering web deliverable, and an
IBM zEnterprise EC12 processor or later.

v A system programmer must configure z/OS for 2G nonpageable large
pages.

v Users who require large pages must be authorized to the
IARRSM.LRGPAGES resource in the RACF® (or an equivalent security
product) FACILITY class with read authority.

1M nonpageable

v This page size applies to object heap large pages. The JIT code cache
cannot be allocated in 1M nonpageable large pages.

v This page size is supported only on the 64-bit SDK for z/OS, not the
31-bit SDK.

v This page size requires z/OS V1.10 with APAR OA25485, and a System
z10® processor or later.

v A system programmer must configure z/OS for 1M nonpageable large
pages.

v Users who require large pages must be authorized to the
IARRSM.LRGPAGES resource in the RACF (or an equivalent security
product) FACILITY class with read authority.

1M pageable

v This page size is supported on the 31-bit and 64-bit SDK for z/OS.
v Both the object heap and the JIT code cache can be allocated in 1M

pageable large pages.
v The use of 1M pageable pages for the object heap provides similar

runtime performance benefits to the use of 1M nonpageable pages. In
addition, using 1M pageable pages provides options for managing
memory that can improve system availability and responsiveness.

v The following minimum prerequisites apply: IBM zEnterprise EC12 with
the Flash Express feature (#0402), z/OS V1.13 with PTFs, APAR
OA41307, and the z/OS V1.13 Remote Storage Manager Enablement
Offering web deliverable.

When the JVM is allocating large pages, if a particular large page size cannot be
allocated, the following sizes are attempted, in order, where applicable:
v 2G nonpageable
v 1M nonpageable
v 1M pageable
v 4K pageable

For example, if 1M nonpageable large pages are requested but cannot be allocated,
pageable 1M large pages are attempted, and then pageable 4K pages.

The option PAGESCM=ALL | NONE in the IEASYSxx parmlib member controls 1M
pageable large pages for the entire LPAR. ALL is the default. Therefore, when you
run your application on a z/OS system that supports Flash, and that has Flash
cards installed, the Flash card is available for paging by default. As a result, RSM
also allows the use of 1M pageable large pages.

The option LFAREA in the IEASYxx parmlib member controls both 2G nonpageable
and 1M nonpageable large pages for the entire LPAR. You can use the z/OS
system command DISPLAY VS,LFAREA to show LFAREA usage information for the

40 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|

|

|
|

|
|
|
|

|
|
|
|

|

|

entire LPAR. For more information, see the documentation for your version of
z/OS. For example: http://www.ibm.com/support/knowledgecenter/
SSLTBW_2.2.0/com.ibm.zos.v2r2.ieae100/lfarea.htm?lang=en.

To obtain the large page sizes available and the current setting, use the
-verbose:sizes option. Note the current settings are the requested sizes and not
the sizes obtained. For object heap size information, check the -verbose:gc output.

Specifying a heap size that is a multiple of the page size uses another page of
memory. For large sizes like 2G, you should set the heap size smaller than the next
page size boundary. For example, when using the 2G pagesize, specify a maximum
heap size of -Xmx2047m instead of -Xmx2048m, or -Xmx4095m instead of -Xmx4096m,
and so on. When using nonpageable large pages, the real memory size that you
specify is allocated when the JVM starts. For example, using options -Xmx1023m
-Xms512m -Xlp:objectheap:pagesize=1M,nonpageable allocates 1G of real memory
for the 1M nonpageable pages when the JVM starts.

All platforms

When specifying -Xmx or -Xms, the physical storage allocated is based on the page
size. For example, if using 2G large pages with Java options -Xmx1024M and -Xms
512K, the Java heap is allocated on a 2G large page. The real memory for the 2G
large page is allocated immediately. Even though the Java heap is consuming a 2G
large page, in this example, the maximum Java heap is 1024M with an initial Java
heap of 512K as specified. If the 2G pagesize is not pageable, the 2G large page is
never paged out as long as the JVM is running. For more information about the
-Xmx option, see “-Xmx” on page 167.

Chapter 6. Running Java technology applications 41

|
|
|
|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieae100/lfarea.htm?lang=en
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieae100/lfarea.htm?lang=en

42 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

Chapter 7. Developing applications

This section contains important considerations for developing Java applications.

JRIO

The JRIO component available in earlier versions of the IBM SDKs for z/OS has
been supplanted by the increasing functionality and enhancements of the JZOS
component.

In IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1, the
JRIO component is deprecated. Existing JRIO functions continue to be supported,
but compiling Java source code that references JRIO classes causes warnings that
identify occurrences of deprecated classes.

As an alternative, use the record I/O facilities provided in the JZOS component.
For more information about JZOS, see: Java Batch Launcher and Toolkit for z/OS.
In applications that use JRIO classes, search the source code for references to the
package:
import com.ibm.recordio;

The presence of this package identifies source code containing references to JRIO
classes.

For service refresh 1, a tracking macro is included with the product that can be
used to determine if and where applications are using JRIO functions. For more
information, see: IBM Java Record I/O (JRIO).

Java Attach API

The status of the Java Attach API support depends on the release of the product,
and your operating system:

Table 7. Default status of the Attach API

Release All platforms, except z/OS z/OS 31-bit and 64-bit

Service refresh 3 and earlier Enabled by default Enabled by default

Service refresh 4 and later Enabled by default Disabled by default

If support is enabled, you must secure access to the Attach API function to ensure
that only authorized users or processes can connect to another virtual machine. If
you do not intend to use the capability, disable it using the following Java system
property:
-Dcom.ibm.tools.attach.enable=no

If support is disabled, you can enable it by specifying the following system
property, after ensuring secure access:
-Dcom.ibm.tools.attach.enable=yes

For more information about the Attach API, see the Version 6 information center.

© Copyright IBM Corp. 2011, 2017 43

|
|
|

|
|

||

|||

|||

|||
|

|

http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.doc.user.lnx.60/user/attachapi.html

44 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

Chapter 8. Debugging

You can debug applications by using the Java Debugger (JDB) application and
various utilities that are provided with the SDK.

A platform-specific JDB is provided with the SDK that can be used to debug your
Java applications. There are also a number of tools provided with the SDK that
you can use to analyze JVM components, such as the shared classes cache.

The selective debugging feature, enabled using the command-line option
-XselectiveDebug, is no longer supported with the IBM J9 2.6 virtual machine.

ORB debug property

New values were added for the com.ibm.CORBA.Debug property in version 6, service
refresh 11. These new values are not supported in IBM SDK Java Technology
Edition Version 6 with the IBM J9 2.6 virtual machine. For more information, see
the diagnostic guide for IBM SDK Java Technology Edition Version 6.

© Copyright IBM Corp. 2011, 2017 45

46 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

Chapter 9. Performance

This performance information applies only to IBM SDK, Java Technology Edition,
Version 6 (J9 VM 2.6).

General information for IBM SDK, Java Technology Edition, Version 6 can be found
in the User Guides and Diagnostic Guide that are available in the IBM Information
Center: http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/welcome/
welcome_javasdk_version.html.

This release introduces new optimizations for Java technology monitors that are
expected to improve CPU efficiency. New locking optimizations are also
implemented that are expected to reduce memory usage and improve performance.
If you experience performance problems that you suspect are connected to this
release, see “Application performance issues” on page 59.

Garbage collection policy options
The -Xgcpolicy options control the behavior of the Garbage Collector. There are a
number of changes to garbage collection options.

The changes to the garbage collection options are:

-Xgcpolicy:gencon
This option is now the default for garbage collection. The policy requests the
combined use of concurrent and generational garbage collection to help
minimize the time that is spent in any garbage collection pause.

-Xgcpolicy:optthruput
This option is no longer the default for garbage collection. The policy delivers
high throughput to applications, but at the cost of occasional pauses.

-Xgcpolicy:subpool
This option is deprecated and is now an alias for optthruput. Therefore, if you
use this option, the effect is the same as optthruput.

-Xgcpolicy:balanced
The balanced garbage collection policy is new. This policy uses a region-based
layout for the Java heap. These regions are individually managed to reduce the
maximum pause time on large heaps and increase the efficiency of garbage
collection. The policy also uses a different object allocation strategy that
improves application throughput on large systems that have Non-Uniform
Memory Architecture (NUMA) characteristics. (x86 and POWER platforms
only) For more information about this policy, see “Balanced Garbage Collection
policy” on page 21.

For a detailed description of the garbage collection options available with IBM
SDK, Java Technology Edition, Version 6, see Garbage collection options.

Changes to command-line options used by the Garbage Collector are detailed in
“Garbage collection command-line options” on page 164.

© Copyright IBM Corp. 2011, 2017 47

http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/welcome/welcome_javasdk_version.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/welcome/welcome_javasdk_version.html

Tuning implications for the Balanced garbage collection policy
Moving from a different garbage collection policy to the Balanced policy can affect
any tuning that you made under the old policy.

New space settings might need adjusting when moving from the
Gencon policy

If you change from using the Gencon policy to the Balanced policy, you might
need to reduce the amount of new space (specified using the -Xmn parameter). The
Gencon policy stores all "new" and "young" objects in a subset of the space
reserved as new space. Although the Gencon policy changes how it defines
"young" objects to suit its needs, the limit on the amount of memory it will try to
collect in one new space collection is always limited by the new space size. The
Balanced policy, however, stores only "new" objects in the space reserved as new
space. This space is the strict minimum amount of memory that the Balanced
policy must collect in every partial collect, but the policy will add other "young",
"nearly empty", or "fragmented" regions of the heap to its collection set in a given
partial collect, if it determines that it must in order to maintain a steady state.

Applications that saturate all processors with running threads
might affect Balanced pause times

Balanced garbage collection attempts to reduce stop-the-world garbage collection
pause times by performing some operations concurrently with running Java
threads. If no processor time is available for the garbage collection work, then the
time and frequency of stop-the-world pauses can increase. At the same time, the
concurrent garbage collection worker threads might cause running Java threads to
be paused, slightly impacting throughput. If the hardware processor resources are
not fully used by the application, the concurrency aspects of the Balanced policy
run optimally.

Balanced total native memory footprint is larger than other
configurations

For the same Java heap size, the Balanced policy uses more native memory than
other garbage collection policies, including the Gencon policy, due to additional
metadata structures that it requires. Typically, this extra storage is approximately
6-7% of the Java heap size.

The Balanced policy might require a larger Java heap than the
same workload in other garbage collection policies

The Balanced policy can ignore areas of the heap which it determines are not going
to yield much free memory, however there is typically some memory available
there. This small amount of wasted memory can accumulate over the entire length
of the heap. Additionally, between global mark phases, the Balanced policy cannot
break some kinds of cyclic reference chains. This behavior means that the policy
might determine that some objects are still in use even though they are not. These
two factors result in additional Java heap consumption.

Using more than one JIT compilation thread
The JIT compiler can use more than one thread to convert method bytecodes into
native code, dynamically.

48 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

The JIT compiler can use more than one compilation thread to perform JIT
compilation tasks. Using multiple threads can potentially help Java applications to
start, or ramp-up, faster. In practice, multiple JIT compilation threads show
performance improvements only where there are unused processing cores in the
system.

The default number of compilation threads is identified by the JVM, and is
dependent on the system configuration. If the resulting number of threads is not
optimum, you can override the JVM decision by using the “-XcompilationThreads”
on page 143 option.

Note: If your system does not have unused processing cores, increasing the
number of compilation threads is unlikely to produce a performance improvement.

Chapter 9. Performance 49

50 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

Chapter 10. Security

Learn about any important security changes that apply to IBM SDK, Java
Technology Edition, Version 6 (J9 VM 2.6). These changes are common to IBM
SDK, Java Technology Edition, Version 6, which contains J9 VM 2.4.

For security information that relates to the following SDK packages, click the links:
v IBM 31-bit SDK for z/OS Java Technology Edition, Version 6.0.1
v IBM 64-bit SDK for z/OS Java Technology Edition, Version 6.0.1

For security information about other platforms, including example code, see
Security reference for IBM SDK Java Technology Edition, Version 6. For a short
summary of the changes in each update, read the following sections:
v “Initial release”
v “Service refresh 1” on page 52
v “Service refresh 2” on page 52
v “Service refresh 3” on page 52
v “Service refresh 4” on page 52
v “Service refresh 5” on page 53
v “Service refresh 6” on page 53
v “Service refresh 7” on page 53
v “Service refresh 8” on page 53
v “Service refresh 8 fix pack 1” on page 54
v “Service refresh 8 fix pack 2” on page 54
v “Service refresh 8 fix pack 3” on page 54
v “Service refresh 8 fix pack 4” on page 55
v “Service refresh 8 fix pack 5” on page 56
v “Service refresh 8 fix pack 7” on page 56
v “Service refresh 8 fix pack 15” on page 56
v “Service refresh 8 fix pack 20” on page 57
v “Service refresh 8 fix pack 25” on page 57
v “Service refresh 8 fix pack 30” on page 58
v “Service refresh 8 fix pack 35” on page 58
v “Service refresh 8 fix pack 40” on page 58

Note: Although the changes are common to IBM SDK, Java Technology Edition,
Version 6, which contains J9 VM 2.4, the service refresh levels differ. If you use the
full security reference guide, Security reference for IBM SDK Java Technology
Edition, Version 6, read the sections to determine the equivalent service refresh
levels.

Initial release

In the first release of this product, the security component is equivalent to IBM
SDK, Java Technology Edition, Version 6, service refresh 9. The following change
applies for security support:

© Copyright IBM Corp. 2011, 2017 51

http://www-03.ibm.com/systems/z/os/zos/tools/java/products/sdk601_31.html#j6content
http://www-03.ibm.com/systems/z/os/zos/tools/java/products/sdk601_64.html#j6content

PKCS11 security provider Cryptographic Support
The following card is supported in a limited fashion on the AIX platform,
in both 32-bit and 64-bit modes: The IBM 4765 PCIe Cryptographic
Coprocessor is supported for use only by Tivoli® Key Lifecycle Manager
release 2.0.1, and follow-on releases.

For Tivoli Key Lifecycle Manager, only the following PKCS#11
crypto-operations are supported:
v Translate an AES 128-bit or 256-bit software key to an AES hardware

(PKCS#11) key.
v Generate an AES 128-bit or 256-bit key.
v Encrypt and decrypt data by using an AES key, and an

AES/ECB/NoPadding cipher.
v Store and retrieve an AES key to, or from, a PKCS11IMPLKS (PKCS#11)

key store.

Service refresh 1

The security component is equivalent to IBM SDK, Java Technology Edition,
Version 6, service refresh 10. Key changes for security include NIST SP800-131a
compliance. Support is provided for Transport Layer Security (TLS) 1.1 and 1.2
protocols, and elliptic curve and AES-GCM cipher suites.

Service refresh 2

There are no changes to the security component.

Service refresh 3

The security component is equivalent to IBM SDK, Java Technology Edition,
Version 6, service refresh 11.

The IBM Common Access Card (IBMCAC) provider enables applications to use
standard APIs to access the United States Department of Defense Common Access
Card (CAC). This provider is available only on the Windows platform.

For more information, see IBM Common Access Card provider.

The IBM PKCS#11 provider now supports the following cryptographic adapters:
v SafeNet Luna SA 4.0
v SafeNet Luna SA 5.0
v Thales nShield Edge
v Thales nShield Connect 1500

For points of interest about these adapters, see Card observations.

Service refresh 4

The security component is equivalent to IBM SDK, Java Technology Edition,
Version 6, service refresh 12.

The IBMJCEFIPS provider has been FIPS certified. If you use IBMJSSE2, this
security provider can now be run in FIPS mode. For more information, see
Running IBMJSSE2 in FIPS mode.

52 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

IKeyman is a GUI application that provides key, certification request and
self-signed certification generation operations. The ikeycmd command is enhanced
to show all certificates in the certificate chain. For more information, see iKeyman.

Service refresh 5

The security component is equivalent to IBM SDK, Java Technology Edition,
Version 6, service refresh 13.

A new set of policy files should be used for the JVM. Although the old policy files
continue to work with all current releases, after installing service refresh 5, you
should plan to update to the new policy files before 2014. This activity is necessary
ahead of the expiry of the certificates that sign these policy files. For more
information, see IBM SDK policy files.

Service refresh 6

The security component is equivalent to IBM SDK, Java Technology Edition,
Version 6, service refresh 14.

In previous releases, when you used the KeyGenerator class to generate DESede
keys by using the IBMPKCS11Impl provider, the IBMPKCS11Impl provider
supported only a DESede key size of 192. The IBMPKCS11Impl provider now also
accepts a DESede key size of 168, to be consistent with the IBM JCE security
provider, which accepts a DESede key size of 168. 168 and 192 actually represent
the same DESede key size; 192 includes the DESede parity bits, but 168 does not.

Service refresh 7

The security component is equivalent to IBM SDK, Java Technology Edition,
Version 6, service refresh 15.

The following enhancement is made in JSSE: If you have not explicitly configured
an SSL socket factory, you can use a system property to override the SSL protocol
that is specified by the default SSL socket factory. For more information, see
http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/
com.ibm.java.security.component.60.doc/security-component/jsse2Docs/
overrideSSLprotocol.html.

Service refresh 8

The security component is equivalent to IBM SDK, Java Technology Edition,
Version 6, service refresh 16

You can now specify a location for the unlimited jurisdiction policy files, instead of
having to move the files to a specific directory within the SDK. By placing the files
in a location that is outside the SDK, you ensure that the files are not overwritten
when you upgrade the SDK. Use the
-Dcom.ibm.security.jurisdictionPolicyDir=<policy_file_location> system
property to specify the new location. For more information, see IBM SDK policy
files.

Chapter 10. Security 53

http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.security.component.60.doc/security-component/jsse2Docs/overrideSSLprotocol.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.security.component.60.doc/security-component/jsse2Docs/overrideSSLprotocol.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.security.component.60.doc/security-component/jsse2Docs/overrideSSLprotocol.html

Service refresh 8 fix pack 1

The security component is equivalent to IBM SDK, Java Technology Edition,
Version 6, service refresh 16, fix pack 1. There are no changes to the security
component in this update.

Service refresh 8 fix pack 2

The security component is equivalent to IBM SDK, Java Technology Edition,
Version 6, service refresh 16, fix pack 2. The following change is made in this
release:

SSL V3.0 protocol is disabled by default
To address the Padding Oracle On Downgraded Legacy Encryption
(POODLE) security vulnerability, the SSL V3.0 protocol is disabled by
default and TLS is enabled. As a result, there is a significant change in
default behavior that will cause failures in any applications that rely on
SSL V3.0. For more information, see IBM SDK, Java Technology Edition
fixes to mitigate against the POODLE security vulnerability
(CVE-2014-3566).

Change to PKCS11Impl supported algorithms
The Java algorithm Cipher.RSA/SSL/PKCS1Padding now uses the PKCS11
mechanism CKM_RSA_PKCS instead of the CKM_RSA_X_509 mechanism. The
Cipher.RSA/ECB/NoPadding algorithm and the Cipher.RSA/ /NoPadding
algorithm now use the CKM_RSA_X_509 mechanism.

For the full list of supported algorithms, see PKCS11 supported algorithms.

iKeyman user guide
There is an updated version of the user guide available with this release.
For more information, see Overview.

New system property for Transport Layer Security (TLS) renegotiation
To address Oracle security fix 8037066, a further system property,
jdk.tls.allowUnsafeServerCertChange=[false | true], is available. Use
this property to allow unsafe server certificate change in renegotiation. For
more information, see Transport Layer Services (TLS) renegotiation.

PKCS12 KeyStore changes
The IBM PKCS12 KeyStore implementation now has enhanced security for
the storage of PrivateKey objects. PrivateKey objects are now stored in a
ShroudedKeyBag, which is similar to the Oracle KeyStore implementation.
ShroudedKeyBag objects are encrypted in addition to the file level
encryption that protects the other contents of the KeyStore. KeyStores
created with the previous version of the IBM PKCS12 KeyStore
implementation can still be read by the newer implementation. However,
storing new items in the KeyStore causes that KeyStore to be converted to
the newer format with enhanced security.

Note: This change does not apply to KeyStore types PKCS12S and
PKCS12S2.

Service refresh 8 fix pack 3

The security component is equivalent to IBM SDK, Java Technology Edition,
Version 6, service refresh 16, fix pack 3.

54 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

http://www.ibm.com/support/docview.wss?uid=swg21688165
http://www.ibm.com/support/docview.wss?uid=swg21688165
http://www.ibm.com/support/docview.wss?uid=swg21688165

New Oracle security property affecting SSL V3.0
To address the POODLE security vulnerability, Oracle have introduced the
security property jdk.tls.disabledAlgorithms, which is set to SSLv3 by
default in the java.security file. This property takes precedence over the
IBM system property that was implemented to address this vulnerability in
service refresh 8 fix pack 2. For more information, see IBM SDK, Java
Technology Edition fixes to mitigate against the POODLE security
vulnerability (CVE-2014-3566).

Service refresh 8 fix pack 4

The security component is equivalent to IBM SDK, Java Technology Edition,
Version 6, service refresh 16, fix pack 4.

Factoring Attack on RSA-EXPORT keys (FREAK) security vulnerability
To address the security vulnerability CVE-2015-0138, RSA_EXPORT ciphers
are no longer enabled by default.

RSA-PSS signature scheme
RSA-PSS is a new signature scheme that is based on the RSA cryptography
system and provides enhanced security. PSS refers to the original
Probabilistic Signature Scheme that was designed by Bellare and Rogaway.

To use this signature scheme, specify the algorithm name "RSAPSS" in the
getInstance(algorithm, provider) method of the Signature class.

The PSSParameterSpec class specifies a parameter specification for the
RSA-PSS signature scheme. You can set the following parameters:
v The algorithm name of the hash function (default SHA-1).
v The name of the mask generation function (default "MGF1").
v The parameters for the mask generation function (default

MGF1ParameterSpec.SHA1).
v The length of salt (default 20).
v The value of the trailer field (default 1).

Note: The default values are the only supported values for the name of the
mask generation function and trailer field.

By using one of the constructors for this class, you can construct a
PSSParameterSpec class and then specify it as an argument to the
set(PSSParameterSpec) method of the Signature class. This action sets the
parameters for the RSA-PSS signature scheme. For more information about
how to set parameters, see the PSSParameterSpec class documentation.

For more information about RSA-PSS, see RFC 3447.

RC4 cipher suites are disabled by default
To address security vulnerability CVE-2015-2808, RC4 cipher suites are
disabled by default and Cipher-Block Chaining (CBC) protection is
enabled. For more information, see Bar Mitzvah security vulnerability
CVE-2015-2808.

Matching SSLv3 to SSL behavior
To address the POODLE security vulnerability, the SSL V3.0 protocol is
disabled by default. If your application hardcodes the protocol label SSLv3,
you can use the com.ibm.jsse2.convertSSLv3 property to automatically
match the behavior for protocol label SSL without modifying your source
code. For more information about this property, see Matching SSLv3 to SSL
behavior.

Chapter 10. Security 55

http://www.ibm.com/support/docview.wss?uid=swg21688165
http://www.ibm.com/support/docview.wss?uid=swg21688165
http://www.ibm.com/support/docview.wss?uid=swg21688165
https://www.ietf.org/rfc/rfc3447.txt

Service refresh 8 fix pack 5

The security component is equivalent to IBM SDK, Java Technology Edition,
Version 6, service refresh 16, fix pack 5.

Weak Diffie-Hellman (DH) keys are disabled by default
To address security vulnerability CVE-2015-4000, DH keys that are less
than 768-bits are disabled by default. For more information, see Logjam
security vulnerability CVE-2015-4000.

Service refresh 8 fix pack 7

The security component is equivalent to IBM SDK, Java Technology Edition,
Version 6, service refresh 16, fix pack 7.

Important changes to maintain FIPS 140-2 compliance
IBMJCEFIPS, Version 1.71 is FIPS certified and includes a fix for the
reseeding of HASHDRBG. Two actions are necessary to maintain
compliance beyond 2015:
1. All applications must install the updated versions of IBMJCEFIPS and

IBM JSSE Provider JAR files (ibmjcefips.jar and
ibmjsseprovider2.jar) that are provided in this fix pack.

2. Applications that call IBMSecureRandom must make a small code
change to call HASHDRBG instead.

For more information about these changes, see IBM JCE FIPS 140-2
Cryptographic Module Security Policy.

Changes to the security property jdk.tls.disabledAlgorithms
This property jdk.tls.disabledAlgorithms now supports the disabling of
cipher suites by naming the cryptographic algorithm to be disabled. The
default value for this property is jdk.tls.disabledAlgorithms=SSLv3, RC4,
DH keySize < 768.

Change to IBMJSSE2 behavior when a minimum DH key size is not set in the
java.security file

If the java.security file is not updated with DH keySize < 768 for the
jdk.tls.disabledAlgorithms property, IBMJSSE2 applies a minimum
default key size of 768 for DH keys. For more information, see Logjam
security vulnerability CVE-2015-4000.

Service refresh 8 fix pack 15

The security component is equivalent to IBM SDK, Java Technology Edition,
Version 6, service refresh 16, fix pack 15.

The following changes are made as a result of Oracle security updates:

New security property com.ibm.security.krb5.autodeducerealm=true|false
This property is set to false by default. A security permission check is
performed on a principal with deduced realm. The check ensures that only
the authorized principal can initiate or accept secure connections. If the
value of this property is true, there is no security check performed.

Ability to customize the Ephemeral Diffie-Hellman key size
Diffie-Hellman (DH) keys of sizes less than 1024 bits are deprecated
because of their insufficient strength. You can now customize the

56 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

ephemeral DH key size with the system property
jdk.tls.ephemeralDHKeySize. For more information, see Customizing the
Ephemeral Diffie-Hellman key size.

New security property jdk.tls.server.defaultDHEParameters
JSSE uses a default set of hardcoded Diffie-Hellman (DH) primes for each
DH group. To improve the security of DH key pair generation, you can
now provide custom values for DH primes by using the security property
jdk.tls.server.defaultDHEParameters, or by configuring the
java.security file. For more information, see the java.security file.

Service refresh 8 fix pack 20

The security component is equivalent to IBM SDK, Java Technology Edition,
Version 6, service refresh 16, fix pack 20.

New support for RFC5915 encoded EC private keys
Support for EC private keys that are encoded according to the format
specified in the RFC5915 document is added to the IBMJCE provider. The
ibm.security.internal.spec.RFC5915ECPrivateKeyEncodedKeySpec class is
introduced to represent these private keys.

Certificates signed with MD5 are no longer allowed by default
In response to the SLOTH security vulnerability, the use of MD5 in SSL
communication is disabled in the SDK by default. Certificates signed with
MD5 are no longer allowed. However, if you are unable to use an
alternative in the short term, you can reverse this change by making
changes to the java.security file that is located in the
<JAVA_HOME>\lib\security directory.
v Remove the value MD5 from the property

jdk.certpath.disabledAlgorithms.
v Remove the value MD5withRSA from the property

jdk.tls.disabledAlgorithms.

Note: By removing these values and allowing the use of certificates signed
with MD5 in SSL communication you are exposed to the SLOTH security
vulnerability.

Service refresh 8 fix pack 25

The security component is equivalent to IBM SDK, Java Technology Edition,
Version 6, service refresh 16, fix pack 25.

The AES-GCM cipher algorithm internal initialization vector generation feature of
the IBMJCE provider is improved to comply with the NIST SP 800-38D
specification. The specification requires that the number of encryption operations,
for a cipher instance by using the same encryption key, must be limited to a
maximum allowable number of iterations. When that number of iterations is
exhausted, an exception is thrown to notify the caller that a fresh encryption key
must be used to reinitialize the cipher instance before encryption can continue.

The following exception is thrown: IllegalStateException ("The maximum number
of IV invocations for the current key have been exhausted.")

The maximum number of iterations is 18,446,744,073,709,551,615.

Chapter 10. Security 57

http://www.mitls.org/pages/attacks/SLOTH
http://www.mitls.org/pages/attacks/SLOTH

Service refresh 8 fix pack 30

The security component is equivalent to IBM SDK, Java Technology Edition,
Version 6, service refresh 16, fix pack 30.

New version of the JCE FIPS provider

This release includes version 1.8 of the IBM JCE FIPS provider. There are
behavior differences between this version and the previous version, 1.71.
These differences might require you to modify your application code if you
are using the IBMJCEFIPS provider or the JSSE provider in FIPS mode. For
more information, see IBM JCE FIPS 140-2 Cryptographic Module Security
Policy.

JGSS: Specifying Kerberos encryption types

You can now specify Kerberos encryption types by using the
com.ibm.security.krb5.enctypes Java system property. For more
information, see Some JGSS Used Java Properties.

Service refresh 8 fix pack 35

The security component is equivalent to IBM SDK, Java Technology Edition,
Version 6, service refresh 16, fix pack 35. There are no changes to the security
component in this update.

Service refresh 8 fix pack 40

The security component is equivalent to IBM SDK, Java Technology Edition,
Version 6, service refresh 16, fix pack 40.

Matching the behavior of SSLContext.getInstance("TLS") to Oracle
To match the behavior of SSLContext.getInstance("TLS") with the Oracle
implementation, set the property com.ibm.jsse2.overrideDefaultTLS to
true. The following protocols are enabled: TLSV1.0, V1.1, and V1.2. For
more information, see Matching the behavior of
SSLContext.getInstance("TLS") to Oracle.

Changes to default protocols in the IBMJSSE2 provider
By default, TLS V1.1 and V1.2 are now enabled on the client and server.
For more information, see Protocols.

Changes to IBMJSSE2 cipher support
3DES is now considered to be a weak cipher and should not be used
unless a stronger cipher is not available in the client requested cipher
suites. The DESede algorithm is added to the list of algorithms that are
disabled by default. For more information, see Disabling cryptographic
algorithms.

58 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

Chapter 11. Troubleshooting and support

Troubleshooting and support.

Problem determination
Problem determination helps you understand the type of fault you have, and the
appropriate course of action.

JVM messages
IBM JVM messages can help you with problem determination. All JVM messages
are written to the standard error (stderr) stream, and selected messages are written
to the system log.

Messages are issued by the JVM in response to certain conditions, including
warning and error situations. These messages can indicate the source of the
problem, allowing you to take corrective action. Additional information for each
JVM message, including suggested actions, is provided in the IBM J9 VM Messages
guide, http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/welcome/
welcome_javasdk_version.html.

By default, all error messages and some information messages are written to the
system log. The specific information messages are JVMDUMP006I, JVMDUMP032I, and
JVMDUMP033I, which provide valuable additional information about dumps
produced by the JVM. However, you can use the -Xlog command-line option to
configure the types of messages that are recorded. For more information about the
-Xlog option, see “-Xlog” on page 145.

You can also control JVM message logging using JVMTI extensions for IBM. There
are two new APIs available to query and modify the JVM settings. For more
information, see “IBM JVMTI extensions” on page 126.

Application performance issues
Performance problems might be associated with new optimizations that have been
introduced.

Java monitor optimizations

New optimizations are expected to improve CPU efficiency. However, there might
be some situations where lower CPU utilization is achieved, but overall application
performance decreases. You can test whether the new optimizations are negatively
affecting your application by reverting to the behavior of earlier versions.
v If performance is affected as soon as you start using this release, use the

following command-line option to revert to the old behavior.
-Xthr:secondarySpinForObjectMonitors

Use the following command-line option to reestablish the new behavior.
-Xthr:noSecondarySpinForObjectMonitors

Note: This optimization is not implemented on the AIX platform.

© Copyright IBM Corp. 2011, 2017 59

http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/welcome/welcome_javasdk_version.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/welcome/welcome_javasdk_version.html

v If performance is affected after the application has run for some time, or after a
period of heavy load, use the following command-line option to revert to the old
behavior.
-Xthr:noAdaptSpin

Use the following command-line option to reestablish the new behavior.
-Xthr:AdaptSpin

Linux operating systems only. If your application uses the Thread.yield() method
extensively, it might be negatively affected by the optimizations of the default
locking behavior on Linux systems that are using the Completely Fair Scheduler
(CFS) in the default mode (sched_compat_yield=0). You can test whether these
optimizations are negatively affecting your application by running the following
test:
1. Use the following command-line option to revert to behavior that is closer to

earlier versions and monitor application performance:
-Xthr:noCfsYield

2. If performance does not improve, remove the previous command-line options
or use the following command-line option to reestablish the new behavior:
-Xthr:cfsYield

Lock optimizations

New locking optimizations are expected to reduce memory usage and improve
performance. However, there might be some situations where a smaller heap size
is achieved for an application, but overall application performance decreases. For
example, if your application synchronizes on objects that are not typically
synchronized on, such as Java.lang.String, run the following test:

Use the following command-line option to revert to behavior that is closer to
earlier versions and monitor application performance:
-Xlockword:mode=all

If performance does not improve, remove the previous command-line option or
use the following command-line option to reestablish the new behavior:
-Xlockword:mode=default

Receiving OutOfMemoryError exceptions
An OutOfMemoryError exception results from running out of space on the Java
heap or the native heap.

If the Java heap is exhausted, an error message is received indicating an
OutOfMemoryError condition with the Java heap.

If the native heap is exhausted, an error message is received indicating that a
native allocation failed.

In either case, the problem might not be a memory leak. The steady state of
memory use that is required might be higher than the memory available.
Therefore, the first step is to determine which heap is being exhausted and increase
the size of that heap.

60 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|
|
|
|
|
|

|
|

|

|
|

|

|

|
|

If the problem is occurring because of a real memory leak, increasing the heap size
does not solve the problem. However, this action does delay the onset of the
OutOfMemoryError exception or error conditions, which might be helpful on
production systems.

The maximum size of an object that can be allocated is limited only by available
memory. The maximum number of array elements supported is 2^31 - 1, the
maximum permitted by the Java Virtual Machine specification. In practice, you
might not be able to allocate large arrays due to available memory. Configure the
total amount of memory available for objects using the -Xmx command-line option.

These limits apply to both 32-bit and 64-bit JVMs.

OutOfMemoryError exceptions on z/OS
The JVM throws a java.lang.OutOfMemoryError exception when the heap is full
and the JVM cannot find space for object creation. Heap usage is a result of the
application design, its use and creation of object populations, and the interaction
between the heap and the garbage collector.

The operation of the JVM's Garbage Collector is such that objects are continuously
allocated on the heap by mutator (application) threads until an object allocation
fails. At this point, a garbage collection cycle begins. At the end of the cycle, the
allocation is tried again. If successful, the mutator threads resume where they
stopped. If the allocation request cannot be fulfilled, an out-of-memory exception
occurs. See ../../../../com.ibm.java.doc.diagnostics.60/diag/understanding/
memory_management.html for more detailed information.

An out-of-memory exception occurs when the live object population requires more
space than is available in the Java managed heap. This situation can occur because
of an object leak or because the Java heap is not large enough for the application
that is running. If the heap is too small, you can use the -Xmx option to increase the
heap size and remove the problem, as follows:
java -Xmx320m MyApplication

If the failure occurs under javac, remember that the compiler is a Java program
itself. To pass parameters to the JVM that is created for compilation, use the -J
option to pass the parameters that you normally pass directly. For example, the
following option passes a 128 MB maximum heap to javac:
javac -J-Xmx128m MyApplication.java

In the case of a genuine object leak, the increased heap size does not solve the
problem and also increases the time taken for a failure to occur.

Out-of-memory exceptions also occur when a JVM call to malloc() fails. This
should normally have an associated error code.

If an out-of-memory exception occurs and no error message is produced, the Java
heap is probably exhausted. To solve the problem:
v Increase the maximum Java heap size to allow for the possibility that the heap is

not big enough for the application that is running.
v Enable the z/OS Heapdump.
v Turn on -verbose:gc output.

The -verbose:gc (-verbose:gc) switch causes the JVM to print out messages when
a garbage collection cycle begins and ends. These messages indicate how much live

Chapter 11. Troubleshooting and support 61

data remains on the heap at the end of a collection cycle. In the case of a Java
object leak, the amount of free space on the heap after a garbage collection cycle
decreases over time. See “Verbose garbage collection logging” on page 111.

A Java object leak is caused when an application retains references to objects that
are no longer in use. In a C application you must free memory when it is no
longer required. In a Java application you must remove references to objects that
are no longer required, usually by setting references to null. When references are
not removed, the object and anything the object references stays in the Java heap
and cannot be removed. This problem typically occurs when data collections are
not managed correctly; that is, the mechanism to remove objects from the collection
is either not used or is used incorrectly.

The JVM produces a heap dump and a system dump when an OutOfMemoryError
exception is thrown. Use a tool to analyze the dumps to find out why the Java
heap is full. The recommended tool for analyzing the heap dump or system dump
is the IBM Monitoring and Diagnostic Tools for Java - Memory Analyzer, see the
information center for IBM Monitoring and Diagnostic Tools for Java.

If an OutOfMemoryError exception is thrown due to private storage area
exhaustion under the 31-bit JVM, verify if the environment variable
_BPX_SHAREAS is set to NO. If _BPX_SHAREAS is set to YES multiple processes
are allowed to share the same virtual storage (address space). The result is a much
quicker depletion of private storage area. For more information on
_BPX_SHAREAS, see the z/OS documentation in IBM Knowledge Center. For
example: Setting _BPX_SHAREAS and _BPX_SPAWN_SCRIPT.

Tracing the Object Request Broker (ORB)
Properties to use to enable ORB traces.

You can turn on ORB tracing by using the -Dcom.ibm.CORBA.Debug system property.
The following options can be used with this property:

false Tracing is not enabled, which is the default value.

true Tracing is enabled.

From service refresh 8 fix pack 4, a new property is available for debugging the
ORB at the subcomponent level:
v com.ibm.CORBA.Debug.Component: This property generates trace output only for

specific Object Request Broker (ORB) subcomponents. The following
subcomponents can be specified:
– DISPATCH

– MARSHAL

– TRANSPORT

– CLASSLOADER

– ALL

When you want to trace more than one of these subcomponents, each
subcomponent must be separated by a comma.

java -Dcom.ibm.CORBA.Debug=true -Dcom.ibm.CORBA.Debug.Output=trace.log
-Dcom.ibm.CORBA.Debug.Component=DISPATCH -Dcom.ibm.CORBA.CommTrace=true <classname>

62 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|
|
|
|
|

|

|

|
|

||

||

|
|

|
|
|

|

|

|

|

|

|
|

|
|

http://www.ibm.com/support/knowledgecenter/SS3KLZ/SS3KLZ/welcome_tools_family.html
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.bpxb200/shbene.htm?lang=en

Attention: Do not enable tracing for normal operation, because it might cause a
performance degradation. First Failure Data Capture (FFDC) still works when
tracing is turned off, which means that serious errors are reported. If a debug file
is produced, examine it for issues. For example, the server might have stopped
without performing an ORB.shutdown().

For more information about ORB debug properties, see Debug properties.

Using diagnostic tools
Diagnostic tools are available to help you solve your problems.

The sections in this part are:
v “Using dump agents”
v “Using Javadump” on page 70
v “Using Heapdump” on page 84
v “Using the dump viewer” on page 89
v “Tracing Java applications and the JVM” on page 100
v “Shared classes diagnostic data” on page 102
v “Garbage Collector diagnostic data” on page 111
v “Using the JVMTI” on page 126
v “Using the DTFJ interface” on page 134

Using dump agents
Dump agents are set up during JVM initialization. There are additional dump
agent events available with the IBM J9 2.6 virtual machine.

Using the -Xdump option
The -Xdump option controls the way you use dump agents and dumps.

You can use the -Xdump option to:
v Add and remove dump agents for various JVM events.
v Update default dump agent settings.
v Limit the number of dumps produced.
v Show dump agent help.

The syntax of the -Xdump option is as follows:

-Xdump command-line option syntax

►► -Xdump: help
none :<options>
events
request
tokens
dynamic
nofailover
directory=<path>
what
<agent>:<options>

►◄

Chapter 11. Troubleshooting and support 63

|
|
|
|
|

|

You can have multiple -Xdump options on the command line. You can also have
multiple dump types triggered by multiple events. For example, the following
command line turns off all Heapdumps, and creates a dump agent that produces a
Heapdump and a Javadump when either a vmstart or vmstop event occurs:
java -Xdump:heap:none -Xdump:heap+java:events=vmstart+vmstop <class> [args...]

You can use the -Xdump:directory= option to specify a directory for all dump file
types to be written to. This directory path is prefixed to the path of all
non-absolute dump file names, including the file names for the default dump
agents.

You can use the -Xdump:what option to list the registered dump agents. The
registered dump agents listed might be different to the agents you specified. The
difference is because the JVM ensures that multiple -Xdump options are merged into
a minimum set of dump agents.

The events keyword is used as the prime trigger mechanism. However, you can
use additional keywords for further control of the dump produced.

The options that you can use with dump agents provide granular control. The
following syntax applies:

-Xdump command-line agent option syntax

►► ▼

▼ ▼

+

-Xdump: <agent>
: help

none :<options>
defaults
,

+

events= <event>
exec=<command>
file=<filename>
filter=<filter>
opts=<options>
priority=<0-999>
range=<ranges>
request=<requests>

►◄

Users of UNIX style shells must be aware that unwanted shell expansion might
occur because of the characters used in the dump agent options. To avoid
unpredictable results, enclose this command-line option in quotation marks. For
example:
java "-Xdump:java:events=throw,filter=*Memory*" <Class>

For more information, see the manual for your shell.

Help options

These options provide usage and configuration information for dumps, as shown
in the following table:

64 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|
|
|
|

Command Result

-Xdump:help Display general dump help

-Xdump:events List available trigger events

-Xdump:request List additional VM requests

-Xdump:tokens List recognized label tokens

-Xdump:what Show registered agents on startup

-Xdump:<agent>:help Provides detailed dump agent help

-Xdump:<agent>:defaults Provides default settings for this agent

Dump agents
A dump agent performs diagnostic tasks when triggered. Most dump agents save
information on the state of the JVM for later analysis. The “tool” agent can be used
to trigger interactive diagnostic data collection.

For a list of dump agents, see ../../../../com.ibm.java.doc.diagnostics.60/diag/
tools/dumpagents_agents.html.

Supplementary information that applies to this release is included in the following
sections:

System dumps:

System dumps involve dumping the address space and as such are generally very
large.

The bigger the footprint of an application the bigger its dump. A dump of a major
server-based application might take up many gigabytes of file space and take
several minutes to complete. In this example, the file name is overridden from the
default.

Windows:
java -Xdump:system:events=vmstop,file=my.dmp

::::::::: removed usage info :::::::::

JVMDUMP006I Processing Dump Event "vmstop", detail "#00000000" - Please Wait.
JVMDUMP007I JVM Requesting System Dump using ’C:\sdk\sdk\jre\bin\my.dmp’
JVMDUMP010I System Dump written to C:\sdk\sdk\jre\bin\my.dmp
JVMDUMP013I Processed Dump Event "vmstop", detail "#00000000".

Other platforms:
java -Xdump:system:events=vmstop,file=my.dmp

::::::::: removed usage info :::::::::

JVMDUMP006I Processing Dump Event "vmstop", detail "#00000000" - Please Wait.
JVMDUMP007I JVM Requesting System Dump using ’/home/user/my.dmp’
JVMDUMP010I System Dump written to /home/user/my.dmp
JVMDUMP013I Processed Dump Event "vmstop", detail "#00000000".

On z/OS, system dumps are written to data sets in the MVS™ file system. The
following syntax is used:
java -Xdump:system:dsn=%uid.MVS.DATASET.NAME

Chapter 11. Troubleshooting and support 65

Windows system dumps are created with the following options set:
MiniDumpWithFullMemory, MiniDumpWithHandleData, MiniDumpWithUnloadedModules,
MiniDumpWithFullMemoryInfo and MiniDumpWithThreadInfo. These options are
equivalent to the options that are set when a dump is created by using the
Windows task manager. The option definitions, and the full list of Windows dump
flags, are documented in the Windows Dev Center.

See “Using the dump viewer” on page 89 for more information about analyzing a
system dump.

Tool option:

The tool option allows external processes to be started when an event occurs.

The following example displays a simple message when the JVM stops. The %pid
token is used to pass the pid of the process to the command. The list of available
tokens can be printed by specifying -Xdump:tokens. If you do not specify a tool to
use, a platform specific debugger is started.

On Windows, the following system output is seen:
java -Xdump:tool:events=vmstop,exec="cmd /c echo process %pid has finished" -version
....
JVMDUMP039I Processing dump event "vmstop", detail "#0000000000000000" at 2012/03/01
17:52:47 - please wait.
JVMDUMP007I JVM Requesting Tool dump using ’cmd /c echo process 2140 has finished’
JVMDUMP011I Tool dump created process 4996
process 2140 has finished
JVMDUMP013I Processed dump event "vmstop", detail "#0000000000000000".

On other platforms, the following system output is seen:
java -Xdump:tool:events=vmstop,exec="echo process %pid has finished" -version
...
JVMDUMP006I Processing dump event "vmstop", detail "#00000000" - please wait.
JVMDUMP007I JVM Requesting Tool dump using ’echo process 6620 has finished’
JVMDUMP011I Tool dump created process 6641
process 6620 has finished
JVMDUMP013I Processed dump event "vmstop", detail "#00000000".

By default, the range option is set to 1..1. If you do not specify a range option for
the dump agent the tool will be started once only. To start the tool every time the
event occurs, set the range option to 1..0.

By default, the thread that launches the external process waits for that process to
end before continuing. The opts option can be used to modify this behavior.

Dump events
Dump agents are triggered by events occurring during JVM operation.

The following table shows the new events that are available:

Event Triggered when... Filter operation

corruptcache The JVM finds that the shared class cache is corrupt. Not applicable.

excessivegc An excessive amount of time is being spent in the
garbage collector

Not applicable.

For a list of other events available with Java 6, see ../../../../
com.ibm.java.doc.diagnostics.60/diag/tools/dumpagents_events.html.

66 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

||
|
|

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680519%28v=vs.85%29.aspx

Default dump agents
The JVM adds a set of dump agents by default during initialization. You can
override this set of dump agents using -Xdump on the command line.

By default, dump files are written to the virtual machine's current working
directory. You can override this value by specifying the -Xdump:directory option at
startup to specify a different dump directory.

There are additional dump events to those in the IBM J9 2.4 virtual machine. The
registered dump agents and default dump events are shown in the output from the
-Xdump:what command. This output varies according to platform.

On z/OS, the -Xdump:system output is changed for the event systhrow.

z/OS platform
Registered dump agents

-Xdump:system:

events=gpf+user+abort+traceassert+corruptcache,
label=%uid.JVM.TDUMP.%job.D%y%m%d.T%H%M%S,
range=1..0,
priority=999,
request=serial

-Xdump:system:

events=systhrow,
filter=java/lang/OutOfMemoryError,
label=%uid.JVM.TDUMP.%job.D%y%m%d.T%H%M%S,
range=1..1,
priority=999,
request=exclusive+compact+prepwalk

-Xdump:heap:

events=systhrow,
filter=java/lang/OutOfMemoryError,
label=/home/user/heapdump.%Y%m%d.%H%M%S.%pid.%seq.phd,
range=1..4,
priority=500,
request=exclusive+compact+prepwalk,
opts=PHD

-Xdump:java:

events=gpf+user+abort+traceassert+corruptcache,
label=/home/user/javacore.%Y%m%d.%H%M%S.%pid.%seq.txt,
range=1..0,
priority=400,
request=exclusive+preempt

-Xdump:java:

events=systhrow,
filter=java/lang/OutOfMemoryError,
label/home/user/javacore.%Y%m%d.%H%M%S.%pid.%seq.txt,
range=1..4,
priority=400,
request=exclusive+preempt

-Xdump:snap:

events=gpf+abort+traceassert+corruptcache,
label=/home/user/Snap.%Y%m%d.%H%M%S.%pid.%seq.trc,
range=1..0,
priority=300,
request=serial

-Xdump:snap:

Chapter 11. Troubleshooting and support 67

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

events=systhrow,
filter=java/lang/OutOfMemoryError,
label=/home/user/Snap.%Y%m%d.%H%M%S.%pid.%seq.trc,
range=1..4,
priority=300,
request=serial

Other platforms
Registered dump agents

-Xdump:system:

events=gpf+abort+traceassert+corruptcache,
label=/home/user/core.%Y%m%d.%H%M%S.%pid.%seq.dmp,
range=1..0,
priority=999,
request=serial

-Xdump:heap:

events=systhrow,
filter=java/lang/OutOfMemoryError,
label=/home/user/heapdump.%Y%m%d.%H%M%S.%pid.%seq.phd,
range=1..4,
priority=500,
request=exclusive+compact+prepwalk,
opts=PHD

-Xdump:java:

events=gpf+user+abort+traceassert+corruptcache,
label=/home/user/javacore.%Y%m%d.%H%M%S.%pid.%seq.txt,
range=1..0,
priority=400,
request=exclusive+preempt

-Xdump:java:

events=systhrow,
filter=java/lang/OutOfMemoryError,
label=/home/user/javacore.%Y%m%d.%H%M%S.%pid.%seq.txt,
range=1..4,
priority=400,
request=exclusive+preempt

-Xdump:snap:

events=gpf+abort+traceassert+corruptcache,
label=/home/user/Snap.%Y%m%d.%H%M%S.%pid.%seq.trc,
range=1..0,
priority=300,
request=serial

-Xdump:snap:

events=systhrow,
filter=java/lang/OutOfMemoryError,
label=/home/user/Snap.%Y%m%d.%H%M%S.%pid.%seq.trc,
range=1..4,
priority=300,
request=serial

Removing dump agents
You can specify the none option with -Xdump to remove dump agents of a
particular type or with particular settings.

The following syntax diagram shows you how you can use the none option:

68 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|
|
|
|
|
|
|

-Xdump command-line syntax: the none option

►► -Xdump: ▼ ▼

▼▼ ▼

,
+

none : events= <event>
exec=<command>
file=<filename>
filter=<filter>
opts=<options>
priority=<0-999>
range=<ranges>
request=<requests>

,
+ +

<agent> :none : events= <event>
exec=<command>
file=<filename>
filter=<filter>
opts=<options>
priority=<0-999>
range=<ranges>
request=<requests>

►◄

You can remove all default dump agents and any preceding dump options by
using:

-Xdump:none

Use this option if you want to specify a new dump configuration to ensure that
previous settings are removed.

You can selectively remove dump agents, by event type, with the -Xdump option.

Here are some examples:

To turn off all Heapdumps (including default agents) but leave Javadump enabled,
use the following option:

-Xdump:java+heap:events=vmstop -Xdump:heap:none

To turn off all dump agents for corruptcache events:

-Xdump:none:events=corruptcache

To turn off just system dumps for corruptcache events:

-Xdump:system:none:events=corruptcache

To turn off all dumps when java/lang/OutOfMemory error is thrown:

-Xdump:none:events=systhrow,filter=java/lang/OutOfMemoryError

To turn off just system dumps when java/lang/OutOfMemory error is thrown:

-Xdump:system:none:events=systhrow,filter=java/lang/OutOfMemoryError

Chapter 11. Troubleshooting and support 69

|

||

|

|

If you remove all dump agents using -Xdump:none with no further -Xdump options,
the JVM still provides these basic diagnostic outputs:
v If a user signal (kill -QUIT) is sent to the JVM, a brief listing of the Java threads

including their stacks, status, and monitor information is written to stderr.
v If a crash occurs, information about the location of the crash, JVM options, and

native and Java stack traces are written to stderr. A system dump is also written
to the user's home directory.

Tip: Removing dump agents and specifying a new dump configuration can require
a long set of command-line options. To reuse command-line options, save the new
dump configuration in a file and use the -Xoptionsfile option. See
http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/
com.ibm.java.doc.diagnostics.60/diag/appendixes/cmdline/
cmdline_specifying.html for more information on using a command-line options
file.

Using Javadump
Javadump produces files that contain diagnostic information related to the JVM
and a Java application captured at a point during run time. Javadump produces
information about native memory use.

You can control the production of Javadumps by enabling dump agents, see
http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/
com.ibm.java.doc.diagnostics.60/diag/tools/dump_agents.html. You can also use
environment variables, see http://www.ibm.com/support/knowledgecenter/
SSYKE2_6.0.0/com.ibm.java.doc.diagnostics.60/diag/tools/javadump_env.html.

Default agents are in place that create Javadumps when the JVM terminates
unexpectedly or when an out-of-memory exception occurs. Javadumps are also
triggered by default when specific signals are received by the JVM.

The content and range of information in a Javadump might change between JVM
versions or service refreshes.

Note: Javadump is also known as Javacore. The default file name for a Javadump
is javacore.<date>.<time>.<pid>.<sequence number>.txt. Javacore is NOT the
same as a core file, which is generated by a system dump.

TITLE, GPINFO, and ENVINFO sections
The first three sections of a javadump provide useful information about the cause
of a dump. The TITLE and ENVINFO sections are different in javadumps that are
generated from an IBM J9 2.6 virtual machine.

TITLE

This section shows basic information about the event that caused the generation of
the javadump, including the time and name. An additional line is included in the
TITLE section that indicates the character set used in the javadump.
0SECTION TITLE subcomponent dump routine
NULL ===============================
1TICHARSET 850
1TISIGINFO Dump Event "vmstart" (00000001) received
1TIDATETIME Date: 2011/01/19 at 13:14:46
1TIFILENAME Javacore filename: C:\test\javacore.20110119.131446.3808.0001.txt
1TIREQFLAGS Request Flags: 0x81 (exclusive+preempt)
1TIPREPSTATE Prep State: 0x6 (vm_access+exclusive_vm_access)

70 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.doc.diagnostics.60/diag/appendixes/cmdline/cmdline_specifying.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.doc.diagnostics.60/diag/appendixes/cmdline/cmdline_specifying.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.doc.diagnostics.60/diag/appendixes/cmdline/cmdline_specifying.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.doc.diagnostics.60/diag/tools/dump_agents.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.doc.diagnostics.60/diag/tools/dump_agents.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.doc.diagnostics.60/diag/tools/javadump_env.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.doc.diagnostics.60/diag/tools/javadump_env.html

GPINFO

On z/OS and Linux on z Systems, the Break Event Address (BEA) register stores
the address of the last branch taken in the GPINFO section. Here is a sample on
z/OS:
0SECTION GPINFO subcomponent dump routine
NULL ================================
2XHOSLEVEL OS Level : z/OS 01.12.00
...
1XHREGISTERS Registers:
2XHREGISTER gpr0: FFFFFFFFFFFFFFFF
2XHREGISTER gpr1: 00000048109FA088
2XHREGISTER gpr2: FFFFFFFFFFFFFFFF
2XHREGISTER gpr3: 0000000000000001
2XHREGISTER gpr4: 00000048109F9620
2XHREGISTER gpr5: 0000004808619800
...
2XHREGISTER fpr13: 0000000000000000
2XHREGISTER fpr14: 0000000000000000
2XHREGISTER fpr15: 0000000000000000
2XHREGISTER fpc: 0008000000000000
2XHREGISTER psw0: 0785140180000000
2XHREGISTER psw1: 0000000026FBF2B0
2XHREGISTER sp: 00000048109F9620
2XHREGISTER bea: 0000000026FBD758
NULL
...

Here is a sample on zLinux:
0SECTION GPINFO subcomponent dump routine
NULL ================================
2XHOSLEVEL OS Level : Linux 3.0.76-0.9-default
...
NULL
1XHREGISTERS Registers:
2XHREGISTER gpr0: 0000000000000000
2XHREGISTER gpr1: 0000000000000000
2XHREGISTER gpr2: 000003FFFD43DAD8
2XHREGISTER gpr3: 000003FFFD43DAD8
2XHREGISTER gpr4: 000003FFFD43DAD8
2XHREGISTER gpr5: 0000000000000000
...
2XHREGISTER fpr13: 0000000000000000
2XHREGISTER fpr14: 0000000000000000
2XHREGISTER fpr15: 0000000000000000
2XHREGISTER psw: 000003FFFCBA8B70
2XHREGISTER mask: 0705E00180000000
2XHREGISTER fpc: 0008000000000000
2XHREGISTER bea: 000003FFFCBA957C
NULL
...

The BEA register is useful for debugging wild branch problems, helping you to
reconstruct the control flow paths that lead up to a crash.

ENVINFO

This section shows information about the runtime environment level that failed,
the command used to start the JVM process, and the JVM environment. Additional
information is provided that is included in the 1CIJAVAVERSION line. This
information is the final package build ID, shown in brackets at the end of the line.

Chapter 11. Troubleshooting and support 71

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

The line, 1CIJITMODES, provides information about JIT settings. In earlier releases,
some of the information about JIT and AOT settings is shown in the 1CIJITVERSION
line.

The line 1CIPROCESSID shows the ID of the operating system process that produced
the javacore.

NULL ---------------------------------
0SECTION ENVINFO subcomponent dump routine
NULL =================================
1CIJAVAVERSION JRE 1.6.0 Windows 7 x86-32 build 20110928_91462 (pwi3260_26sr1-20110929_01(SR1))
1CIVMVERSION VM build R26_JVM_26_20110927_1438_B91416
1CIJITVERSION r11_20110916_20778
1CIGCVERSION GC - R26_JVM_26_20110923_1426_B91192
1CIJITMODES JIT enabled, AOT enabled, FSD disabled, HCR disabled
1CIRUNNINGAS Running as a standalone JVM
1CIPROCESSID Process ID: 14632 (0x3928)
1CICMDLINE java -Xdump:java:events=vmstart -version
1CIJAVAHOMEDIR Java Home Dir: c:\build\pwi3260_26sr1-20110929\sdk\jre
1CIJAVADLLDIR Java DLL Dir: c:\build\pwi3260_26sr1-20110929\sdk\jre\bin
1CISYSCP Sys Classpath: c:\build\pwi3260_26sr1-20110929\sdk\jre\bin\default\jclSC160\vm.jar;....
1CIUSERARGS UserArgs:
2CIUSERARG -Xoptionsfile=c:\build\pwi3260_26sr1-20110929\sdk\jre\bin\default\options.default

On Linux platforms, the ENVINFO section contains additional information about
the sched_compat_yield Linux kernel setting in force when the JVM was started.
The typical output is:
1CISYSINFO System Configuration
NULL ------------------------
2CISYSINFO /proc/sys/kernel/sched_compat_yield = 0

For further information about the effect of this kernel setting, see the details about
the Linux Completely Fair Scheduler in Known limitations on Linux.

Native memory (NATIVEMEMINFO)
The NATIVEMEMINFO section of a Javadump provides information about the native
memory allocated by the Java runtime environment).

Native memory is memory requested from the operating system using library
functions such as malloc() and mmap().

When the runtime environment allocates native memory, the memory is associated
with a high-level memory category. Each memory category has two running
counters:
v The total number of bytes allocated but not yet freed.
v The number of native memory allocations that have not been freed.

Each memory category can have subcategories.

The NATIVEMEMINFO section provides a breakdown of memory categories by runtime
environment component. Each memory category contains the total value for each
counter in that category and all related subcategories.

The runtime environment tracks native memory allocated only by the Java runtime
environment and class libraries. The runtime environment does not record memory
allocated by application or third-party JNI code. The total native memory reported
in the NATIVEMEMINFO section is always slightly less than the total native address
space usage reported through operating system tools for the following reasons:

72 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|

v The memory counter data might not be in a consistent state when the Javadump
is taken.

v The data does not include any overhead introduced by the operating system.

A memory category for Direct Byte Buffers can be found in the VM Class
libraries section of the NATIVEMEMINFO output.

0SECTION NATIVEMEMINFO subcomponent dump routine
NULL =================================
0MEMUSER
1MEMUSER JRE: 591,281,600 bytes / 2763 allocations
1MEMUSER |
2MEMUSER +--VM: 575,829,048 bytes / 2143 allocations
2MEMUSER | |
3MEMUSER | +--Classes: 14,357,408 bytes / 476 allocations
2MEMUSER | |
3MEMUSER | +--Memory Manager (GC): 548,712,024 bytes / 435 allocations
3MEMUSER | | |
4MEMUSER | | +--Java Heap: 536,870,912 bytes / 1 allocation
3MEMUSER | | |
4MEMUSER | | +--Other: 11,841,112 bytes / 434 allocations
2MEMUSER | |
3MEMUSER | +--Threads: 11,347,376 bytes / 307 allocations
3MEMUSER | | |
4MEMUSER | | +--Java Stack: 378,832 bytes / 28 allocations
3MEMUSER | | |
4MEMUSER | | +--Native Stack: 10,649,600 bytes / 30 allocations
3MEMUSER | | |
4MEMUSER | | +--Other: 318,944 bytes / 249 allocations
2MEMUSER | |
3MEMUSER | +--Trace: 324,464 bytes / 294 allocations
2MEMUSER | |
3MEMUSER | +--JVMTI: 17,784 bytes / 13 allocations
2MEMUSER | |
3MEMUSER | +--JNI: 129,760 bytes / 250 allocations
2MEMUSER | |
3MEMUSER | +--Port Library: 10,240 bytes / 62 allocations
2MEMUSER | |
3MEMUSER | +--Other: 929,992 bytes / 306 allocations
1MEMUSER |
2MEMUSER +--JIT: 14,278,744 bytes / 287 allocations
2MEMUSER | |
3MEMUSER | +--JIT Code Cache: 8,388,608 bytes / 4 allocations
2MEMUSER | |
3MEMUSER | +--JIT Data Cache: 2,097,216 bytes / 1 allocation
2MEMUSER | |
3MEMUSER | +--Other: 3,792,920 bytes / 282 allocations
1MEMUSER |
2MEMUSER +--Class Libraries: 1,173,808 bytes / 333 allocations
2MEMUSER | |
3MEMUSER | +--Harmony Class Libraries: 2,000 bytes / 1 allocation
2MEMUSER | |
3MEMUSER | +--VM Class Libraries: 1,171,808 bytes / 332 allocations
3MEMUSER | | |
4MEMUSER | | +--sun.misc.Unsafe: 6,768 bytes / 5 allocations
4MEMUSER | | | |
5MEMUSER | | | +--Direct Byte Buffers: 6,120 bytes / 1 allocation
4MEMUSER | | | |
5MEMUSER | | | +--Other: 648 bytes / 4 allocations
3MEMUSER | | |
4MEMUSER | | +--Other: 1,165,040 bytes / 327 allocations
NULL
NULL --

Storage Management (MEMINFO)
The MEMINFO section provides information about the Memory Manager.

Chapter 11. Troubleshooting and support 73

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

This section is different in Javadumps that are generated from an IBM J9 2.6 virtual
machine. The information shows the free memory, used memory, and total memory
for the heap, in decimal and hexadecimal values. If an initial maximum heap size,
or soft limit, is specified using the–Xsoftmx option, this is also shown as the target
memory for the heap. For more information about –Xsoftmx, see “-Xsoftmx” on
page 168.

The MEMINFO section also contains garbage collection history data as a sequence
of trace points, each with a timestamp, ordered with the most recent trace point
first.

The following example shows some typical output. All of these values are
generated as hexadecimal values. The column headings in the MEMINFO section have
the following meanings:
v Object memory section (HEAPTYPE):

id The ID of the space or region.

start The start address of this region of the heap.

end The end address of this region of the heap.

size The size of this region of the heap.

space/region
For a line that contains only an id and a name, this column shows the
name of the memory space. Otherwise the column shows the name of
the memory space, followed by the name of a particular region that is
contained within that memory space.

v Internal memory section (SEGTYPE), including class memory, JIT code cache, and
JIT data cache:

segment
The address of the segment control data structure.

start The start address of the native memory segment.

alloc The current allocation address within the native memory segment.

end The end address of the native memory segment.

type An internal bit field describing the characteristics of the native memory
segment.

size The size of the native memory segment.
0SECTION MEMINFO subcomponent dump routine
NULL =================================
NULL
1STHEAPTYPE Object Memory
NULL id start end size space/region
1STHEAPSPACE 0x000000000042D4B0 -- -- -- Generational
1STHEAPREGION 0x0000000000383C70 0x000007FFDFFB0000 0x000007FFE02B0000 0x0000000000300000 Generational/Tenured Region
1STHEAPREGION 0x0000000000383B80 0x000007FFFFEB0000 0x000007FFFFF30000 0x0000000000080000 Generational/Nursery Region
1STHEAPREGION 0x0000000000383A90 0x000007FFFFF30000 0x000007FFFFFB0000 0x0000000000080000 Generational/Nursery Region
NULL
1STHEAPTOTAL Total memory: 4194304 (0x0000000000400000)
1STHEAPTARGET Target memory: 20971520 (0x0000000001400000)
1STHEAPINUSE Total memory in use: 1184528 (0x0000000000121310)
1STHEAPFREE Total memory free: 3009776 (0x00000000002DECF0)
NULL
1STSEGTYPE Internal Memory
NULL segment start alloc end type size
1STSEGMENT 0x0000000002CE3DF8 0x0000000003BD00F0 0x0000000003BD00F0 0x0000000003BE00F0 0x01000040 0x0000000000010000
1STSEGMENT 0x0000000002CE3D38 0x0000000003A509F0 0x0000000003A509F0 0x0000000003A609F0 0x01000040 0x0000000000010000
(lines removed for clarity)
1STSEGMENT 0x00000000004481D8 0x0000000002CE9B10 0x0000000002CE9B10 0x0000000002CF9B10 0x00800040 0x0000000000010000
NULL

74 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|
|
|
|

|
|

||

||

||

||
|

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

1STSEGTOTAL Total memory: 1091504 (0x000000000010A7B0)
1STSEGINUSE Total memory in use: 0 (0x0000000000000000)
1STSEGFREE Total memory free: 1091504 (0x000000000010A7B0)
NULL
1STSEGTYPE Class Memory
NULL segment start alloc end type size
1STSEGMENT 0x0000000003B117B8 0x0000000003C4E210 0x0000000003C501C0 0x0000000003C6E210 0x00020040 0x0000000000020000
1STSEGMENT 0x0000000003B116F8 0x0000000003C451D0 0x0000000003C4D1D0 0x0000000003C4D1D0 0x00010040 0x0000000000008000
(lines removed for clarity)
1STSEGMENT 0x00000000004489E8 0x0000000003804A90 0x0000000003824120 0x0000000003824A90 0x00020040 0x0000000000020000
NULL
1STSEGTOTAL Total memory: 2099868 (0x0000000000200A9C)
1STSEGINUSE Total memory in use: 1959236 (0x00000000001DE544)
1STSEGFREE Total memory free: 140632 (0x0000000000022558)
NULL
1STSEGTYPE JIT Code Cache
NULL segment start alloc end type size
1STSEGMENT 0x0000000002D5B508 0x000007FFDEE80000 0x000007FFDEEA2D78 0x000007FFDF080000 0x00000068 0x0000000000200000
1STSEGMENT 0x0000000002CE9688 0x000007FFDF080000 0x000007FFDF09FD58 0x000007FFDF280000 0x00000068 0x0000000000200000
1STSEGMENT 0x0000000002CE95C8 0x000007FFDF280000 0x000007FFDF29FD58 0x000007FFDF480000 0x00000068 0x0000000000200000
1STSEGMENT 0x0000000002CE9508 0x000007FFDF480000 0x000007FFDF49FD58 0x000007FFDF680000 0x00000068 0x0000000000200000
NULL
1STSEGTOTAL Total memory: 8388608 (0x0000000000800000)
1STSEGINUSE Total memory in use: 533888 (0x0000000000082580)
1STSEGFREE Total memory free: 7854720 (0x000000000077DA80)
1STSEGLIMIT Allocation limit: 268435456 (0x0000000010000000)
NULL
1STSEGTYPE JIT Data Cache
NULL segment start alloc end type size
1STSEGMENT 0x0000000002CE9888 0x0000000003120060 0x0000000003121F58 0x0000000003320060 0x00000048 0x0000000000200000
NULL
1STSEGTOTAL Total memory: 2097152 (0x0000000000200000)
1STSEGINUSE Total memory in use: 7928 (0x0000000000001EF8)
1STSEGFREE Total memory free: 2089224 (0x00000000001FE108)
1STSEGLIMIT Allocation limit: 402653184 (0x0000000018000000)
NULL
1STGCHTYPE GC History
3STHSTTYPE 14:54:17:123462116 GMT j9mm.134 - Allocation failure end: newspace=111424/524288 oldspace=3010952/3145728
loa=156672/156672
3STHSTTYPE 14:54:17:123459726 GMT j9mm.470 - Allocation failure cycle end: newspace=111448/524288 oldspace=
3010952/3145728 loa=156672/156672
3STHSTTYPE 14:54:17:123454948 GMT j9mm.65 - LocalGC end: rememberedsetoverflow=0 causedrememberedsetoverflow=0
scancacheoverflow=0 failedflipcount=0 failedflipbytes=0 failedtenurecount=0 failedtenurebytes=0 flipcount=2561
flipbytes=366352 newspace=111448/524288 oldspace=3010952/3145728 loa=156672/156672 tenureage=10
3STHSTTYPE 14:54:17:123441638 GMT j9mm.140 - Tilt ratio: 50
3STHSTTYPE 14:54:17:122664846 GMT j9mm.64 - LocalGC start: globalcount=0 scavengecount=1 weakrefs=0 soft=0
phantom=0 finalizers=0
3STHSTTYPE 14:54:17:122655972 GMT j9mm.63 - Set scavenger backout flag=false
3STHSTTYPE 14:54:17:122647781 GMT j9mm.135 - Exclusive access: exclusiveaccessms=0.002 meanexclusiveaccessms=0.002
threads=0 lastthreadtid=0x0000000002DCCE00 beatenbyotherthread=0
3STHSTTYPE 14:54:17:122647440 GMT j9mm.469 - Allocation failure cycle start: newspace=0/524288 oldspace=
3010952/3145728 loa=156672/156672 requestedbytes=24
3STHSTTYPE 14:54:17:122644709 GMT j9mm.133 - Allocation failure start: newspace=0/524288 oldspace=3010952/3145728
loa=156672/156672 requestedbytes=24
NULL

Locks, monitors, and deadlocks (LOCKS)
An example of the LOCKS component part of a Javadump taken during a
deadlock.

A lock typically prevents more than one entity from accessing a shared resource.
Each object in the Java language has an associated lock, also referred to as a
monitor, which a thread obtains by using a synchronized method or block of code.
In the case of the JVM, threads compete for various resources in the JVM and locks
on Java objects. In addition to locks that are obtained by using synchronized code,
the Java language includes locks based on the java.util.concurrent.locks
package.

When you take a Java dump, the JVM attempts to detect deadlock cycles. The JVM
can detect cycles that consist of locks that are obtained through synchronization,
locks that extend the java.util.concurrent.locks.AbstractOwnableSynchronizer
class, or a mix of both lock types.

Chapter 11. Troubleshooting and support 75

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

The following example is from a deadlock test program where two threads,
“DeadLockThread 0” and “DeadLockThread 1”, unsuccessfully attempt to
synchronize on a java/lang/String object, and lock an instance of the
java.util.concurrent.locks.ReentrantLock class.

The Locks section in the example (highlighted) shows that thread
“DeadLockThread 1” locked the object instance java/lang/
String@0x00007F5E5E18E3D8. The monitor was created as a result of a Java code
fragment such as synchronize(aString), and this monitor has “DeadLockThread
0” waiting to get a lock on this same object instance (aString). The deadlock
section also shows an instance of the
java.util.concurrentlocks.ReentrantLock$NonfairSync class, that is locked by
“DeadLockThread 0”, and has “Deadlock Thread 1” waiting.

This classic deadlock situation is caused by an error in application design; the
Javadump tool is a major tool in the detection of such events.

Blocked thread information is also available in the Threads section of the Java
dump, in lines that begin with 3XMTHREADBLOCK, for threads that are blocked,
waiting or parked. For more information, see “Blocked thread information” on
page 79.

NULL --
0SECTION LOCKS subcomponent dump routine
NULL ===============================
NULL
1LKPOOLINFO Monitor pool info:
2LKPOOLTOTAL Current total number of monitors: 2
NULL
1LKMONPOOLDUMP Monitor Pool Dump (flat & inflated object-monitors):
2LKMONINUSE sys_mon_t:0x00007F5E24013F10 infl_mon_t: 0x00007F5E24013F88:
3LKMONOBJECT java/lang/String@0x00007F5E5E18E3D8: Flat locked by "Deadlock Thread 1" (0x00007F5E84362100), entry count 1
3LKWAITERQ Waiting to enter:
3LKWAITER "Deadlock Thread 0" (0x00007F5E8435BD00)
NULL
1LKREGMONDUMP JVM System Monitor Dump (registered monitors):
2LKREGMON Thread global lock (0x00007F5E84004F58): <unowned>
2LKREGMON &(PPG_mem_mem32_subAllocHeapMem32.monitor) lock (0x00007F5E84005000): <unowned>
2LKREGMON NLS hash table lock (0x00007F5E840050A8): <unowned>

< lines removed for brevity >

1LKDEADLOCK Deadlock detected !!!
NULL ---------------------
NULL
2LKDEADLOCKTHR Thread "Deadlock Thread 0" (0x00007F5E8435BD00)
3LKDEADLOCKWTR is waiting for:
4LKDEADLOCKMON sys_mon_t:0x00007F5E24013F10 infl_mon_t: 0x00007F5E24013F88:
4LKDEADLOCKOBJ java/lang/String@0x00007F5E5E18E3D8
3LKDEADLOCKOWN which is owned by:
2LKDEADLOCKTHR Thread "Deadlock Thread 1" (0x00007F5E84362100)
3LKDEADLOCKWTR which is waiting for:
4LKDEADLOCKOBJ java/util/concurrent/locks/ReentrantLock$NonfairSync@0x00007F5E7E1464F0
3LKDEADLOCKOWN which is owned by:
2LKDEADLOCKTHR Thread "Deadlock Thread 0" (0x00007F5E8435BD00)

Threads and stack trace (THREADS)
For the application programmer, one of the most useful pieces of a Java dump is
the THREADS section. This section shows a list of Java threads, native threads, and
stack traces.

A Java thread is implemented by a native thread of the operating system. Each
thread is represented by a set of lines such as:

3XMTHREADINFO "main" J9VMThread:0x002DA900, j9thread_t:0x00D84630, java/lang/Thread:0x227E0078, state:R,
prio=5
3XMJAVALTHREAD (java/lang/Thread getId:0x1, isDaemon:false)
3XMTHREADINFO1 (native thread ID:0xE28, native priority:0x5, native policy:UNKNOWN, vmstate:CW, vm thread flags:0x00000001)
3XMCPUTIME CPU usage total: 0.562500000 secs, user: 0.218750000 secs, system: 0.343750000 secs
3XMHEAPALLOC Heap bytes allocated since last GC cycle=36512 (0x8EA0)
3XMTHREADINFO3 Java callstack:
4XESTACKTRACE at java/lang/Thread.sleep(Native Method)
4XESTACKTRACE at java/lang/Thread.sleep(Thread.java:961)

76 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

4XESTACKTRACE at Sleep.main(Sleep.java:11)
3XMTHREADINFO3 Native callstack:
4XENATIVESTACK ZwWaitForSingleObject+0xa (0x0000000077C612FA [ntdll+0x512fa])
4XENATIVESTACK WaitForSingleObjectEx+0x9c (0x000007FEFDAB10DC [KERNELBASE+0x10dc])
4XENATIVESTACK monitor_wait_original+0x83e (j9thread.c:3766, 0x000007FEF4C2600E [J9THR26+0x600e])
4XENATIVESTACK j9thread_monitor_wait+0x43 (j9thread.c:3492, 0x000007FEF4C26993 [J9THR26+0x6993])
4XENATIVESTACK internalAcquireVMAccessNoMutexWithMask+0x32c (vmaccess.c:320, 0x000007FEF1EDE02C [j9vm26+0x6e02c])
4XENATIVESTACK javaCheckAsyncMessages+0xe9 (async.asm:156, 0x000007FEF1E81609 [j9vm26+0x11609])

The properties on the first line are the thread name, addresses of the JVM thread
structures and of the Java thread object, thread state, and Java thread priority. For
Java threads, the second line contains the thread ID and daemon status from the
Java thread object.The next line includes the following properties:
v Native operating system thread ID
v Native operating system thread priority
v Native operating system scheduling policy
v Internal VM thread state
v Internal VM thread flags

The Java thread priority is mapped to an operating system priority value in a
platform-dependent manner. A large value for the Java thread priority means that
the thread has a high priority. In other words, the thread runs more frequently
than lower priority threads.

The values of state can be:
v R - Runnable - the thread is able to run when given the chance.
v CW - Condition Wait - the thread is waiting. For example, because:

– A sleep() call is made
– The thread has been blocked for I/O
– A wait() method is called to wait on a monitor being notified
– The thread is synchronizing with another thread with a join() call

v S – Suspended – the thread has been suspended by another thread.
v Z – Zombie – the thread has been killed.
v P – Parked – the thread has been parked by the new concurrency API

(java.util.concurrent).
v B – Blocked – the thread is waiting to obtain a lock that something else currently

owns.

If a thread is parked or blocked, the output contains a line for that thread,
beginning with 3XMTHREADBLOCK, listing the resource that the thread is waiting for
and, if possible, the thread that currently owns that resource. For more information
see “Blocked thread information” on page 79.

For Java threads and attached native threads, the output contains a line beginning
with 3XMCPUTIME, which displays the number of seconds of CPU time that was
consumed by the thread since that thread was started. The total CPU time that is
consumed by a thread is reported. On AIX and Windows, the time that is
consumed in user code and in system code is also reported. If a Java thread is
re-used from a thread pool, the CPU counts for that thread are not reset, and
continue to accumulate.

For Java threads, the line beginning with 3XMHEAPALLOC displays the number of
bytes of Java objects and arrays allocated by that thread since the last garbage
collection cycle. In the example, this line is just before the Java callstack.

Chapter 11. Troubleshooting and support 77

|
|
|
|
|
|
|
|

|
|
|
|

|

|

|

|

|

|
|
|
|

|

|

|

|

|

|

|

|

|

|
|

|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|

If the Java dump was triggered by an exception throw, catch, uncaught, or
systhrow event, or by the com.ibm.jvm.Dump API, the output contains the stored
tracepoint history for the thread. For more information, see “Trace history for the
current thread” on page 82.

When you initiate a javadump to obtain diagnostic information, the JVM quiesces
Java threads before producing the javacore. A preparation state of
exclusive_vm_access is shown in the 1TIPREPSTATE line of the TITLE section.
1TIPREPSTATE Prep State: 0x4 (exclusive_vm_access)

Threads that were running Java code when the javacore was triggered have a Java
thread state of R (Runnable) and an internal VM thread state of CW (Condition
Wait).

Previous behavior

Before service refresh 8, fix pack 4, threads that were running Java code when the
javacore was triggered show the thread state as in CW (Condition Wait) state, for
example:

3XMTHREADINFO "main" J9VMThread:0x002DA900, j9thread_t:0x00D84630, java/lang/Thread:0x227E0078, state:CW,
prio=5
3XMJAVALTHREAD (java/lang/Thread getId:0x1, isDaemon:false)
3XMTHREADINFO1 (native thread ID:0xE28, native priority:0x5, native policy:UNKNOWN)

The javacore LOCKS section shows that these threads are waiting on an internal JVM
lock.
2LKREGMON Thread public flags mutex lock (0x002A5234): <unowned>
3LKNOTIFYQ Waiting to be notified:
3LKWAITNOTIFY "main" (0x002DA900)

Understanding Java and native thread details:

After each thread heading are the stack traces, which can be separated into three
types; Java threads, attached native threads and unattached native threads. There is
some extra information shown when the IBM SDK, Java Technology Edition,
Version 6 uses the IBM J9 2.6 virtual machine.

The following examples are taken from 32-bit Windows. Other platforms provide
different levels of detail for the native stack.

Java thread

A Java thread runs on a native thread, which means that there are two stack traces
for each Java thread. The first stack trace shows the Java methods and the second
stack trace shows the native functions. This example is an internal Java thread:

3XMTHREADINFO "Attach API wait loop" J9VMThread:0x23783D00, j9thread_t:0x026958F8, java/lang/Thread:0x027F0640, state:R, prio=10
3XMJAVALTHREAD (java/lang/Thread getId:0xB, isDaemon:true)
3XMTHREADINFO1 (native thread ID:0x15C, native priority:0xA, native policy:UNKNOWN)
3XMCPUTIME CPU usage total: 0.562500000 secs, user: 0.218750000 secs, system: 0.343750000 secs
3XMHEAPALLOC Heap bytes allocated since last GC cycle=0 (0x0)
3XMTHREADINFO3 Java callstack:
4XESTACKTRACE at com/ibm/tools/attach/javaSE/IPC.waitSemaphore(Native Method)
4XESTACKTRACE at com/ibm/tools/attach/javaSE/CommonDirectory.waitSemaphore(CommonDirectory.java:193)
4XESTACKTRACE at com/ibm/tools/attach/javaSE/AttachHandler$WaitLoop.waitForNotification(AttachHandler.java:337)
4XESTACKTRACE at com/ibm/tools/attach/javaSE/AttachHandler$WaitLoop.run(AttachHandler.java:415)
3XMTHREADINFO3 Native callstack:
4XENATIVESTACK ZwWaitForSingleObject+0x15 (0x7787F8B1 [ntdll+0x1f8b1])
4XENATIVESTACK WaitForSingleObjectEx+0x43 (0x75E11194 [kernel32+0x11194])
4XENATIVESTACK WaitForSingleObject+0x12 (0x75E11148 [kernel32+0x11148])
4XENATIVESTACK j9shsem_wait+0x94 (j9shsem.c:233, 0x7460C394 [J9PRT26+0xc394])
4XENATIVESTACK Java_com_ibm_tools_attach_javaSE_IPC_waitSemaphore+0x48 (attach.c:480, 0x6FA61E58 [jclse7b_26+0x1e58])
4XENATIVESTACK VMprJavaSendNative+0x504 (jnisend.asm:521, 0x709746D4 [j9vm26+0x246d4])
4XENATIVESTACK javaProtectedThreadProc+0x9d (vmthread.c:1868, 0x709A05BD [j9vm26+0x505bd])
4XENATIVESTACK j9sig_protect+0x44 (j9signal.c:150, 0x7460F0A4 [J9PRT26+0xf0a4])

78 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|
|
|
|

|
|
|

|

|
|
|

|

|
|
|
|
|
|
|

|
|

|
|
|

|

|
|
|
|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

4XENATIVESTACK javaThreadProc+0x39 (vmthread.c:298, 0x709A0F39 [j9vm26+0x50f39])
4XENATIVESTACK thread_wrapper+0xda (j9thread.c:1234, 0x7497464A [J9THR26+0x464a])
4XENATIVESTACK _endthread+0x48 (0x7454C55C [msvcr100+0x5c55c])
4XENATIVESTACK _endthread+0xe8 (0x7454C5FC [msvcr100+0x5c5fc])
4XENATIVESTACK BaseThreadInitThunk+0x12 (0x75E1339A [kernel32+0x1339a])
4XENATIVESTACK RtlInitializeExceptionChain+0x63 (0x77899EF2 [ntdll+0x39ef2])
4XENATIVESTACK RtlInitializeExceptionChain+0x36 (0x77899EC5 [ntdll+0x39ec5])

The Java stack trace includes information about locks that were taken within that
stack by calls to synchronized methods or the use of the synchronized keyword.

After each stack frame in which one or more locks were taken, the Java stack trace
might include extra lines starting with 5XESTACKTRACE. These lines show the
locks that were taken in the method on the previous line in the trace, and a
cumulative total of how many times the locks were taken within that stack at that
point. This information is useful for determining the locks that are held by a
thread, and when those locks will be released.

Java locks are re-entrant; they can be entered more than once. Multiple occurrences
of the synchronized keyword in a method might result in the same lock being
entered more than once in that method. Because of this behavior, the entry counts
might increase by more than one, between two method calls in the Java stack, and
a lock might be entered at multiple positions in the stack. The lock is not released
until the first entry, the one furthest down the stack, is released.

Java locks are released when the Object.wait() method is called. Therefore a
record of a thread entering a lock in its stack does not guarantee that the thread
still holds the lock. The thread might be waiting to be notified about the lock, or it
might be blocked while attempting to re-enter the lock after being notified. In
particular, if another thread calls the Object.notifyAll() method, all threads that
are waiting for that monitor must compete to re-enter it, and some threads will
become blocked. You can determine whether a thread is blocked or waiting on a
lock by looking at the 3XMTHREADBLOCK line for that thread. For more
information see “Blocked thread information.” A thread that calls the
Object.wait() method releases the lock only for the object that it called the
Object.wait() method on. All other locks that the thread entered are still held by
that thread.

The following lines show an example Java stack trace for a thread that calls
java.io.PrintStream methods:

4XESTACKTRACE at java/io/PrintStream.write(PrintStream.java:504(Compiled Code))
5XESTACKTRACE (entered lock: java/io/PrintStream@0xA1960698, entry count: 3)
4XESTACKTRACE at sun/nio/cs/StreamEncoder.writeBytes(StreamEncoder.java:233(Compiled Code))
4XESTACKTRACE at sun/nio/cs/StreamEncoder.implFlushBuffer(StreamEncoder.java:303(Compiled Code))
4XESTACKTRACE at sun/nio/cs/StreamEncoder.flushBuffer(StreamEncoder.java:116(Compiled Code))
5XESTACKTRACE (entered lock: java/io/OutputStreamWriter@0xA19612D8, entry count: 1)
4XESTACKTRACE at java/io/OutputStreamWriter.flushBuffer(OutputStreamWriter.java:203(Compiled Code))
4XESTACKTRACE at java/io/PrintStream.write(PrintStream.java:551(Compiled Code))
5XESTACKTRACE (entered lock: java/io/PrintStream@0xA1960698, entry count: 2)
4XESTACKTRACE at java/io/PrintStream.print(PrintStream.java:693(Compiled Code))
4XESTACKTRACE at java/io/PrintStream.println(PrintStream.java:830(Compiled Code))
5XESTACKTRACE (entered lock: java/io/PrintStream@0xA1960698, entry count: 1)

Blocked thread information:

For threads that are in parked, waiting, or blocked states, the Javadump THREADS
section contains information about the resource that the thread is waiting for. The
information might also include the thread that currently owns that resource. Use
this information to solve problems with blocked threads.

Chapter 11. Troubleshooting and support 79

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

Information about the state of a thread can be found in the THREADS section of the
Javadump output. Look for the line that begins with 3XMTHREADINFO. The following
states apply:

state:P
Parked threads

state:B
Blocked threads

state:CW
Waiting threads

To find out which resource is holding the thread in parked, waiting, or blocked
state, look for the line that begins 3XMTHREADBLOCK. This line might also indicate
which thread owns that resource.

The 3XMTHREADBLOCK section is not produced for threads that are blocked or waiting
on a JVM System Monitor, or threads that are in Thread.sleep().

Threads enter the parked state through the java.util.concurrent API. Threads enter
the blocked state through the Java synchronization operations.

The locks that are used by blocked and waiting threads are shown in the LOCKS
section of the Javadump output, along with the thread that is owning the resource
and causing the block. Locks that are being waited on might not have an owner.
The waiting thread remains in waiting state until it is notified, or until the timeout
expires. Where a thread is waiting on an unowned lock the lock is shown as Owned
by: <unowned>.

Parked threads are listed as parked on the blocker object that was passed to the
underlying java.util.concurrent.locks.LockSupport.park() method, if such an object
was supplied. If a blocker object was not supplied, threads are listed as Parked on:
<unknown>.

If the object that was passed to the park() method extends the
java.util.concurrent.locks.AbstractOwnableSynchronizer class, and uses the
methods of that class to keep track of the owning thread, then information about
the owning thread is shown. If the object does not use the
AbstractOwnableSynchronizer class, the owning thread is listed as <unknown>. The
AbstractOwnableSynchronizer class is used to provide diagnostic data, and is
extended by other classes in the java.util.concurrent.locks package. If you develop
custom locking code with the java.util.concurrent package then you can extend and
use the AbstractOwnableSynchronizer class to provide information in Java dumps
to help you diagnose problems with your locking code.

Example: a blocked thread

The following sample output from the THREADS section of a Javadump shows a
thread, Thread-5, that is in the blocked state, state:B. The thread is waiting for the
resource java/lang/String@0x4D8C90F8, which is currently owned by thread main.

3XMTHREADINFO "Thread-5" J9VMThread:0x4F6E4100, j9thread_t:0x501C0A28, java/lang/Thread:0x4D8C9520,
state:B, prio=5
3XMTHREADINFO1 (native thread ID:0x664, native priority:0x5, native policy:UNKNOWN)
3XMTHREADBLOCK Blocked on: java/lang/String@0x4D8C90F8 Owned by: "main" (J9VMThread:0x00129100, java/
lang/Thread:0x00DD4798)

80 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|
|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|
|
|
|

The LOCKS section of the Javadump shows the following, corresponding output
about the block:

1LKMONPOOLDUMP Monitor Pool Dump (flat & inflated object-monitors):
2LKMONINUSE sys_mon_t:0x501C18A8 infl_mon_t: 0x501C18E4:
3LKMONOBJECT java/lang/String@0x4D8C90F8: Flat locked by "main" (0x00129100), entry count 1
3LKWAITERQ Waiting to enter:
3LKWAITER "Thread-5" (0x4F6E4100)

Look for information about the blocking thread, main, elsewhere in the THREADS
section of the Javadump, to understand what that thread was doing when the
Javadump was taken.

Example: a waiting thread

The following sample output from the THREADS section of a Javadump shows a
thread, Thread-5, that is in the waiting state, state:CW. The thread is waiting to be
notified on java/lang/String@0x68E63E60, which is currently owned by thread
main:

3XMTHREADINFO "Thread-5" J9VMThread:0x00503D00, j9thread_t:0x00AE45C8, java/lang/Thread:0x68E04F90,
state:CW, prio=5
3XMTHREADINFO1 (native thread ID:0xC0C, native priority:0x5, native policy:UNKNOWN)
3XMTHREADBLOCK Waiting on: java/
lang/String@0x68E63E60 Owned by: "main" (J9VMThread:0x6B3F9A00, java/lang/Thread:0x68E64178)

The LOCKS section of the Javadump shows the corresponding output about the
monitor being waited on:

1LKMONPOOLDUMP Monitor Pool Dump (flat & inflated object-monitors):
2LKMONINUSE sys_mon_t:0x00A0ADB8 infl_mon_t: 0x00A0ADF4:
3LKMONOBJECT java/lang/String@0x68E63E60: owner "main" (0x6B3F9A00), entry count 1
3LKNOTIFYQ Waiting to be notified:
3LKWAITNOTIFY "Thread-5" (0x00503D00)

Example: a parked thread that uses the AbstractOwnableSynchronizer class

The following sample output shows a thread, Thread-5, in the parked state,
state:P. The thread is waiting to enter a java.util.concurrent.locks.ReentrantLock
lock that uses the AbstractOwnableSynchronizer class:

3XMTHREADINFO "Thread-5" J9VMThread:0x4F970200, j9thread_t:0x501C0A28, java/lang/Thread:0x4D9AD640,
state:P, prio=5
3XMTHREADINFO1 (native thread ID:0x157C, native priority:0x5, native policy:UNKNOWN)
3XMTHREADBLOCK Parked on: java/util/concurrent/locks/ReentrantLock$NonfairSync@0x4D9ACCF0 Owned by:
"main" (J9VMThread:0x00129100, java/lang/Thread:0x4D943CA8)

This example shows both the reference to the J9VMThread thread and the
java/lang/Thread thread that currently own the lock. However in some cases the
J9VMThread thread is null:

3XMTHREADINFO "Thread-6" J9VMThread:0x4F608D00, j9thread_t:0x501C0A28, java/lang/Thread:0x4D92AE78,
state:P, prio=5
3XMTHREADINFO1 (native thread ID:0x8E4, native priority:0x5, native policy:UNKNOWN)
3XMTHREADBLOCK Parked on: java/util/concurrent/locks/ReentrantLock$FairSync@0x4D92A960 Owned by:
"Thread-5" (J9VMThread: <null>, java/lang/Thread:0x4D92AA58)

In this example, the thread that is holding the lock, Thread-5, ended without using
the unlock() method to release the lock. Thread Thread-6 is now deadlocked. The
THREADS section of the Javadump will not contain another thread with a
java/lang/Thread reference of 0x4D92AA58. (The name Thread-5 could be reused
by another thread, because there is no requirement for threads to have unique
names.)

Chapter 11. Troubleshooting and support 81

|
|

|
|
|
|
|

|
|
|

|

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|

|

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|

Example: a parked thread that is waiting to enter a user-written lock that does
not use the AbstractOwnableSynchronizer class

Because the lock does not use the AbstractOwnableSynchronizer class, no
information is known about the thread that owns the resource:

3XMTHREADINFO "Thread-5" J9VMThread:0x4FBA5400, j9thread_t:0x501C0A28, java/lang/Thread:0x4D918570,
state:P, prio=5
3XMTHREADINFO1 (native thread ID:0x1A8, native priority:0x5, native policy:UNKNOWN)
3XMTHREADBLOCK Parked on: SimpleLock@0x4D917798 Owned by: <unknown>

Example: a parked thread that called the LockSupport.park method without
supplying a blocker object

Because a blocker object was not passed to the park() method, no information is
known about the locked resource:

3XMTHREADINFO "Thread-5" J9VMThread:0x4F993300, j9thread_t:0x501C0A28, java/lang/Thread:0x4D849028,
state:P, prio=5
3XMTHREADINFO1 (native thread ID:0x1534, native priority:0x5, native policy:UNKNOWN)
3XMTHREADBLOCK Parked on: <unknown> Owned by: <unknown>

The last two examples provide little or no information about the cause of the
block. If you want more information, you can write your own locking code by
following the guidelines in the API documentation for the
java.util.concurrent.locks.LockSupport and
java.util.concurrent.locks.AbstractOwnableSynchronizer classes. By using these
classes, your locks can provide details to monitoring and diagnostic tools, which
helps you to determine which threads are waiting and which threads are holding
locks.

Trace history for the current thread:

Some Java dumps show recent trace history for the current thread. You can use this
information to diagnose the cause of Java exceptions.

For Java dumps that were triggered by exception throw, catch, uncaught, and
systhrow events (see “Dump events” on page 66 for more information) or by the
com.ibm.jvm.Dump API, extra lines are output at the end of the THREADS section.
These lines show the stored tracepoint history for the thread, with the most recent
tracepoints first. The trace data is introduced by the following line:
1XECTHTYPE Current thread history (J9VMThread:0x0000000002BA0500)

The tracepoints provide detailed information about the JVM, JIT, or class library
code that was run on the thread immediately before the Java dump was triggered.
In the following example, the Java dump was triggered by a java/lang/VerifyError
exception. The tracepoints show that the reason for the exception was that a
method in a class was overridden, but is defined as final in a superclass (see
tracepoint j9vm.91 in the example). The output also shows the names of the classes
that were being loaded by the JVM when the exception occurred.

3XEHSTTYPE (time) j9dmp.9 - Preparing for dump, filename=C:\test\verifyerror\javacore.20140124.155651.4544.0001.txt
3XEHSTTYPE (time) j9vm.2 - <Created RAM class 0000000000000000 from ROM class 00000000105E9DD0
3XEHSTTYPE (time) j9vm.304 - >setCurrentExceptionUTF
3XEHSTTYPE (time) j9vm.301 - <setCurrentException
3XEHSTTYPE (time) j9vm.5 - <exitInterpreter
3XEHSTTYPE (time) j9vm.10 - >internalSendExceptionConstructor
3XEHSTTYPE (time) j9vm.353 - <loader 0000000002CC1900 class 0X000000000244DFA8 attemptDynamicClassLoad exit
3XEHSTTYPE (time) j9vm.2 - <Created RAM class 0000000002CC1900 from ROM class 00000000105D27E0
3XEHSTTYPE (time) j9vm.80 - ROM class 00000000105D27E0 is named java/lang/VerifyError
3XEHSTTYPE (time) j9vm.1 - >Create RAM class from ROM class 00000000105D27E0 in class loader 000000000F4CE448
3XEHSTTYPE (time) j9vm.351 - >loader 00000000FFF70000 class java/lang/VerifyError attemptDynamicClassLoad entry
3XEHSTTYPE (time) j9vm.248 - <dispatchAsyncEvents
3XEHSTTYPE (time) j9vm.247 - call event handler: handlerKey=0 eventHandler=000007FEED7EAF20 userData=0000000000000000

82 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|
|

|
|

|
|
|
|

|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|

|

|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

3XEHSTTYPE (time) j9vm.246 - >dispatchAsyncEvents asyncEventFlags=0000000000000001
3XEHSTTYPE (time) j9vm.119 - send loadClass(java/lang/VerifyError), stringObject: 00000000FFFE85C0 loader: 00000000FFF70000
3XEHSTTYPE (time) j9vm.316 - 0X0000000002BA0500 loader 000000000F4CE448 class java/lang/VerifyError arbitratedLoadClass calling callLoadClass
3XEHSTTYPE (time) j9vm.318 - 0X0000000002BA0500 loader 000000000F4CE448 contendedLoadTableAddThread className java/lang/VerifyError count 1
3XEHSTTYPE (time) j9vm.315 - 0X0000000002BA0500 loader 000000000F4CE448 class java/lang/VerifyError arbitratedLoadClass enter className
3XEHSTTYPE (time) j9vm.294 - >setCurrentException index=55 constructorIndex=0 detailMessage=00000000FFFE8528
3XEHSTTYPE (time) j9vm.302 - >setCurrentExceptionUTF exceptionNumber=55 detailUTF=JVMVRFY007 final method overridden; class=B, method=bad()V
3XEHSTTYPE (time) j9vm.91 - * Method bad.()V is overridden, but it is final in a superclass. Throw VerifyError
3XEHSTTYPE (time) j9vm.319 - 0X0000000002BA0500 loader 000000000F4CE5F8 class A arbitratedLoadClass exit foundClass 0000000002CC9600
3XEHSTTYPE (time) j9vm.120 - sent loadClass(A) -- got 00000000E0010D60
3XEHSTTYPE (time) j9vm.2 - <Created RAM class 0000000002CC9600 from ROM class 00000000105E9FB0
3XEHSTTYPE (time) j9vm.80 - ROM class 00000000105E9FB0 is named A
3XEHSTTYPE (time) j9vm.1 - >Create RAM class from ROM class 00000000105E9FB0 in class loader 000000000F4CE5F8
3XEHSTTYPE (time) j9bcverify.18 - j9bcv_verifyClassStructure
3XEHSTTYPE (time) j9bcverify.14 - j9bcv_verifyClassStructure - class: A
3XEHSTTYPE (time) j9vm.353 - <loader 0000000000000000 class 0X000000000244E5F8 attemptDynamicClassLoad exit
3XEHSTTYPE (time) j9vm.351 - >loader 00000000FFF70000 class A attemptDynamicClassLoad entry
3XEHSTTYPE (time) j9vm.119 - send loadClass(A), stringObject: 00000000FFFE7DB8 loader: 00000000FFF70110
3XEHSTTYPE (time) j9vm.315 - >0X0000000002BA0500 loader 000000000F4CE5F8 class A arbitratedLoadClass enter className
3XEHSTTYPE (time) j9vm.80 - ROM class 00000000105E9DD0 is named B
3XEHSTTYPE (time) j9vm.1 - >Create RAM class from ROM class 00000000105E9DD0 in class loader 000000000F4CE5F8
3XEHSTTYPE (time) j9bcverify.18 - j9bcv_verifyClassStructure
3XEHSTTYPE (time) j9bcverify.14 - j9bcv_verifyClassStructure - class: B

Shared Classes (SHARED CLASSES)
An example of the shared classes section that includes summary information about
the shared data cache.

See “printStats utility” on page 106 for a description of the summary information.

In service refresh 1, information is provided for the reserved and maximum space
for AOT and JIT data bytes.
--
SHARED CLASSES subcomponent dump routine
==

Cache Created With

-Xnolinenumbers = false

Cache Summary

No line number content = false
Line number content = true

ROMClass start address = 0x629EC000
ROMClass end address = 0x62AD1468
Metadata start address = 0x636F9800
Cache end address = 0x639D0000
Runtime flags = 0x00000001ECA6029F
Cache generation = 13

Cache size = 16776768
Free bytes = 12747672
ROMClass bytes = 939112
AOT code bytes = 0
AOT data bytes = 0
AOT class hierarchy bytes = 0
AOT thunk bytes = 0
Reserved space for AOT bytes = -1
Maximum space for AOT bytes = -1
JIT hint bytes = 0
JIT profile bytes = 2280
Reserved space for JIT data bytes = -1
Maximum space for JIT data bytes = -1
Java Object bytes = 0
Zip cache bytes = 791856
ReadWrite bytes = 114240
JCL data bytes = 0

Chapter 11. Troubleshooting and support 83

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Byte data bytes = 0
Metadata bytes = 18920
Class debug area size = 2162688
Class debug area % used = 7%
Class LineNumberTable bytes = 97372
Class LocalVariableTable bytes = 57956

Number ROMClasses = 370
Number AOT Methods = 0
Number AOT Data Entries = 0
Number AOT Class Hierarchy = 0
Number AOT Thunks = 0
Number JIT Hints = 0
Number JIT Profiles = 24
Number Classpaths = 1
Number URLs = 0
Number Tokens = 0
Number Java Objects = 0
Number Zip Caches = 28
Number JCL Entries = 0
Number Stale classes = 0
Percent Stale classes = 0%

Cache is 12% full

Cache Memory Status

Cache Name Memory type Cache path

sharedcc_tempcache Memory mapped file C:\Documents and Settings\Administrator\Local
Settings\Application Data\javasharedresources\C260M2A32P_sharedcc_tempcache_G13

Cache Lock Status

Lock Name Lock type TID owning lock

Cache write lock File lock Unowned
Cache read/write lock File lock Unowned

Using Heapdump
The term Heapdump describes the IBM JVM mechanism that generates a dump of
all the live objects that are on the Java heap; that is, objects that are being used by
the running Java application.

Heapdump generates files that contain a list of objects that are in the Java heap.
There are two supported Heapdump formats
v Portable Heap Dump (PHD) format
v text or classic format

The content of PHD Heapdumps has changed. Instead of 16-bit hashcodes, the
IBM J9 2.6 virtual machine now has 32-bit hashcodes.

The content and range of information in a Heapdump might change between JVM
versions or service refreshes.

Portable Heap Dump (PHD) file format
A PHD Heapdump file contains a header, plus a number of records that describe
objects, arrays, and classes.

This description of the PHD Heapdump file format includes references to primitive
numbers, which are listed here with lengths:
v “byte”: 1 byte in length.

84 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

v “short”: 2 byte in length.
v “int”: 4 byte in length.
v “long”: 8 byte in length.
v “word”: 4 bytes in length on 32-bit platforms, or 8 bytes on 64-bit platforms.

The general structure of a PHD file consists of these elements:
v The UTF string “portable heap dump”.
v An “int” containing the PHD version number.
v An “int” containing flags:

– A value of 1 indicates that the “word” length is 64-bit.
– A value of 2 indicates that all the objects in the dump are hashed. This flag is

set for Heapdumps that use 16-bit hashcodes, that is, IBM SDK,
JavaTechnology Edition 5.0 or 6 with an IBM J9 2.3, 2.4, or 2.5 virtual machine
(VM). This flag is not set for IBM SDK, JavaTechnology Edition 6 when the
product includes the IBM J9 2.6 virtual machine. These Heapdumps use 32-bit
hashcodes that are only created when used. For example, these hashcodes are
created when the APIs Object.hashCode() or Object.toString() are called in a
Java application. If this flag is not set, the presence of a hashcode is indicated
by the hashcode flag on the individual PHD records.

– A value of 4 indicates that the dump is from an IBM J9 VM.
v A “byte” containing a tag that indicates the start of the header. The tag value is

1.
v A number of header records. These records are preceded by a one-byte header

tag. The header record tags have a different range of values from the body, or
object record tags. The end of the header is indicated by the end of header tag.
Header records are optional.
– header tag 1. Not used in Heapdumps generated by the IBM J9 VM.
– header tag 2. Indicates the end of the header.
– header tag 3. Not used in Heapdumps generated by the IBM J9 VM.
– header tag 4. This tag is a UTF string that indicates the JVM version. The

string has a variable length.
v A “byte” containing the “start of dump” body tag, with a tag value of 2.
v A number of dump records. These records are preceded by a 1 byte tag. The

possible record types are:
– Short object record. Indicated by having the 0x80 bit of the tag set.
– Medium object record. Indicated by having the 0x40 bit of the tag set, and the

top bit with a value of 0.
– Primitive array record. Indicated by having the 0x20 bit of the tag set. All

other tag values have the top 3 bits with a value of 0.
– Long object record. Indicated by having a tag value of 4.
– Object array record. Indicated by having a tag value of 5.
– Class record. Indicated by having a tag value of 6.
– Long primitive array record. Indicated by having a tag value of 7.
– Object array record (revised). Indicated by having a tag value of 8.

See later sections for more information about these record types.
v A “byte” containing a tag that indicates the end of the Heapdump. This tag has

a value of 3.

The current PHD version is 5, which can be found in the following releases:

Chapter 11. Troubleshooting and support 85

v IBM SDK, JavaTechnology Edition 5.0 service refresh 9 and later (APAR IZ34218)
v IBM SDK, JavaTechnology Edition 6 with one of the following IBM J9 virtual

machine levels 2.4, 2.5, or 2.6.

PHD version 4 is found in IBM SDK, JavaTechnology Edition 5.0 service refresh 8
and earlier. These versions use an IBM J9 2.3 virtual machine.

PHD object records
PHD files can contain short, medium, and long object records, depending on the
number of object references in the Heapdump.

Short object record

The short object record includes detailed information within the tag “byte”. This
information includes:
v The 1 byte tag. The top bit (0x80) is set and the following 7 bits in descending

order contain:
– 2 bits for the class cache index. The value represents an index into a cache of

the last four classes used.
– 2 bits containing the number of references. Most objects contain 0 - 3

references. If there are 4 - 7 references, the medium object record is used. If
there are more than seven references, the long object record is used.

– 1 bit to indicate whether the gap is a “byte” or a “short”. The gap is the
difference between the address of this object and the previous object. If set,
the gap is a “short”. If the gap does not fit into a “short”, the “long” object
record form is used.

– 2 bits indicating the size of each reference. The following values apply:
- 0 indicates “byte” format.
- 1 indicates “short” format.
- 2 indicates “integer” format.
- 3 indicates “long” format.

v A “byte” or a “short” containing the gap between the address of this object and
the address of the preceding object. The value is signed and represents the
number of 32-bit “words” between the two addresses. Most gaps fit into 1 byte.

v If all objects are hashed, a “short” containing the hashcode.
v The array of references, if references exist. The tag shows the number of

elements, and the size of each element. The value in each element is the gap
between the address of the references and the address of the current object. The
value is a signed number of 32-bit “words”. Null references are not included.

Medium object record

These records provide the actual address of the class rather than a cache index.
The format is:
v The 1 byte tag. The second bit (0x40) is set and the following 6 bits in

descending order contain:
– 3 bits containing the number of references.
– 1 bit to indicate whether the gap is a 1 byte value or a “short” For more

information, see the description in the short record format.
– 2 bits indicating the size of each reference. For more information, see the

description in the short record format.

86 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

v A “byte” or a “short” containing the gap between the address of this object and
the address of the preceding object. For more information, see the description in
the short record format.

v A “word” containing the address of the class of this object.
v If all objects are hashed, a “short” containing the hashcode.
v The array of references. For more information, see the description in the short

record format.

Long object record

This record format is used when there are more than seven references, or if there
are extra flags or a hashcode. The record format is:
v The 1 byte tag, containing the value 4.
v A “byte” containing flags, with these bits in descending order:

– 2 bits to indicate whether the gap is a “byte”, “short”, “int” or “long” format.
– 2 bits indicating the size of each reference. For more information, see the

description in the short record format.
– 2 unused bits.
– 1 bit indicating if the object was hashed and moved. If this bit is set then the

record includes the hashcode.
– 1 bit indicating if the object was hashed.

v A “byte”, “short”, “int” or “long” containing the gap between the address of this
object and the address of the preceding object. For more information, see the
description in the short record format.

v A “word” containing the address of the class of this object.
v If all objects are hashed, a “short” containing the hashcode. Otherwise, an

optional “int” containing the hashcode if the hashed and moved bit is set in the
record flag byte.

v An “int” containing the length of the array of references.
v The array of references. For more information, see the description in the short

record format.

PHD array records
PHD array records can cover primitive arrays and object arrays.

Primitive array record

The primitive array record contains:
v The 1 byte tag. The third bit (0x20) is set and the following 5 bits in descending

order contain:
– 3 bits containing the array type. The array type values are:

- 0 = bool
- 1 = char
- 2 = float
- 3 = double
- 4 = byte
- 5 = short
- 6 = int
- 7 = long

Chapter 11. Troubleshooting and support 87

– 2 bits indicating the length of the array size and also the length of the gap.
These values apply:
- 0 indicates a “byte”.
- 1 indicates a “short”.
- 2 indicates an “int”.
- 3 indicates a “long”.

v “byte”, “short”, “int” or “long” containing the gap between the address of this
object and the address of the preceding object. For more information, see the
description in the short object record format.

v “byte”, “short”, “int” or “long” containing the array length.
v If all objects are hashed, a “short” containing the hashcode.

Long primitive array record

The long primitive array record is used when a primitive array has been hashed.
The format is:
v The 1 byte tag containing the value 7.
v A “byte” containing flags, with these bits in descending order:

– 3 bits containing the array type. For more information, see the description of
the primitive array record.

– 1 bit indicating the length of the array size and also the length of the gap.
The range for this value includes:
- 0 indicating a “byte”.
- 1 indicating a “word”.

– 2 unused bits.
– 1 bit indicating if the object was hashed and moved. If this bit is set, the

record includes the hashcode.
– 1 bit indicating if the object was hashed.

v a “byte” or “word” containing the gap between the address of this object and
the address of the preceding object. For more information, see the description in
the short object record format.

v a “byte” or “word” containing the array length.
v If all objects are hashed, a “short” containing the hashcode. Otherwise, an

optional “int” containing the hashcode if the hashed and moved bit is set in the
record flag byte.

Object array record

The object array record format is:
v The 1 byte tag containing the value 5.
v A “byte” containing flags with these bits in descending order:

– 2 bits to indicate whether the gap is “byte”, “short”, “int” or “long”.
– 2 bits indicating the size of each reference. For more information, see the

description in the short record format.
– 2 unused bits.
– 1 bit indicating if the object was hashed and moved. If this bit is set, the

record includes the hashcode.
– 1 bit indicating if the object was hashed.

88 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

v A “byte”, “short”, “int” or “long” containing the gap between the address of this
object and the address of the preceding object. For more information, see the
description in the short record format.

v A “word” containing the address of the class of the objects in the array. Object
array records do not update the class cache.

v If all objects are hashed, a “short” containing the hashcode. If the hashed and
moved bit is set in the records flag, this field contains an “int”.

v An “int” containing the length of the array of references.
v The array of references. For more information, see the description in the short

record format.

Object array record (revised) - from PHD version 5

This array record is similar to the previous array record with two key differences:
1. The tag value is 8.
2. An extra “int” value is shown at the end. This int contains the true array

length, shown as a number of array elements. The true array length might
differ from the length of the array of references because null references are
excluded.

This record type was added in PHD version 5.

PHD class records
The PHD class record encodes a class object.

Class record

The format of a class record is:
v The 1 byte tag, containing the value 6.
v A “byte” containing flags, with these bits in descending order:

– 2 bits to indicate whether the gap is a “byte”, “short”, “int” or “long”.
– 2 bits indicating the size of each static reference. For more information, see

the description in the short record format.
– 1 bit indicating if the object was hashed and moved. If this bit is set, the

record includes the hashcode.
v A “byte”, “short”, “int” or “long” containing the gap between the address of this

class and the address of the preceding object. For more information, see the
description in the short record format.

v An “int” containing the instance size.
v If all objects are hashed, a “short” containing the hashcode. Otherwise, an

optional “int” containing the hashcode if the hashed and moved bit is set in the
record flag byte.

v A “word” containing the address of the superclass.
v A UTF string containing the name of this class.
v An “int” containing the number of static references.
v The array of static references. For more information, see the description in the

short record format.

Using the dump viewer
The SDK dump viewer presents system dump information in a readable format.

Chapter 11. Troubleshooting and support 89

System dumps are produced in a platform-specific binary format. This format is
typically a raw memory image of the process that was running at the time the
dump was initiated. The dump viewer helps you navigate around the dump,
obtaining information in a readable format. You can view Java information such as
threads and objects on the heap, and native information such as native stacks,
libraries, and raw memory locations.

The dump viewer is started with the jdmpview command. For detailed information
about the dump viewer, see this section of the Java 6 diagnostics guide:
http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/
com.ibm.java.doc.diagnostics.60/diag/tools/dump_viewer_dtfjview/
dump_viewer.html.

These topics contain additional information that applies to using the dump viewer
with an IBM J9 2.6 virtual machine.

Support for compressed files
When you run the jdmpview tool on a compressed file, the tool detects and shows
all system dump, Java dump, and heap dump files within the compressed file.
Because of this behavior, more than one context might be displayed when you start
jdmpview.

The context allows you to select which dump file you want to view. On z/OS, a
system dump can contain multiple address spaces and multiple JVM instances. In
this case, the context allows you to select the address space and JVM instance
within the dump file.

If you do not use the -core or -xml options with the -zip option, jdmpview shows
multiple contexts, one for each source file that it identified in the compressed file.

By default, when you specify a file by using the -zip option, the contents are
extracted to a temporary directory before processing. Use the -notemp option to
prevent this extraction step, and run all subsequent commands in memory. Because
the commands are running in memory, you might have to increase the maximum
heap size by using the -Xmx option, especially if you are analyzing a large heap.

Example 1

This example shows the output for a .zip file that contains a system dump from a
Windows system. The example command to produce this output is jdmpview -zip
wintest.zip:

Available contexts (* = currently selected context) :

Source : file:/C:/test/test.zip#core.20120402.151255.3728.0001.dmp
*0 : PID: 3728 : JRE 1.6.0 Windows 7 amd64-64 build 20120119_100021 (pwa6460_26sr2-20120123_01(SR2))

Example 2

This example shows the output for a compressed file that contains a system dump
from a z/OS system. The system dump contains multiple address spaces and two
JVM instances:

Available contexts (* = currently selected context) :

Source : file:///D:/examples/MV2C.IVANPEG.D110706.T131828.S00053
0 : ASID: 0x1 : No JRE : No JRE
1 : ASID: 0x3 : No JRE : No JRE
2 : ASID: 0x4 : No JRE : No JRE
3 : ASID: 0x6 : No JRE : No JRE
4 : ASID: 0x7 : No JRE : No JRE

90 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|

|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.doc.diagnostics.60/diag/tools/dump_viewer_dtfjview/dump_viewer.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.doc.diagnostics.60/diag/tools/dump_viewer_dtfjview/dump_viewer.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.doc.diagnostics.60/diag/tools/dump_viewer_dtfjview/dump_viewer.html

*5 : ASID: 0x73 EDB: 0x8004053a0 : JRE 1.6.0 z/OS s390x-64 build 20110217_75924
(pmz6460_26-20110228_01)

6 : ASID: 0x73 EDB: 0x83d2053a0 : JRE 1.6.0 z/OS s390x-64 build 20110217_75924
(pmz6460_26-20110228_01)

7 : ASID: 0x73 EDB: 0x4a7bd9e8 : No JRE
8 : ASID: 0xffff : No JRE : No JRE

Example 3

This example shows the output for a compressed file that contains several system
dump, Javadump, and Heapdump files:

Available contexts (* = currently selected context) :

Source : file:/D:/Samples/multi-image.zip#core1.dmp
*0 : PID: 10463 : JRE 1.6.0 Linux amd64-64 build 20120228_104045 pxa6460_26sr1-20120302_01(SR2))

Source : file:/D:/Samples/multi-image.zip#core2.dmp
1 : PID: 12268 : JRE 1.6.0 Linux amd64-64 build 20120228_104045 pxa6460_26sr1-20120302_01(SR2))

Source : file:/D:/Samples/multi-image.zip#javacore.20120228.100128.10441.0002.txt
2 : JRE 1.6.0 Linux amd64-64 build 20120228_94967 (pxa6460_26sr1-20120302_01(SR2))

Source : file:/D:/Samples/multi-image.zip#javacore.20120228.090916.14653.0002.txt
3 : JRE 1.6.0 Linux amd64-64 build 20120228_94967 (pxa6460_26sr1-20120302_01(SR2))

Source : file:/D:/Samples/multi-image.zip#heapdump.20111115.093819.4336.0001.phd
4 : JRE 1.6.0 Windows 7 amd64-64 build 20111105_94283 (pxa6460_26sr1-20120302_01(SR2))

Working with Java dump and heap dump files

When working with Java dump and heap dump files, some jdmpview commands
do not produce any output. This result is because Java dump files contain only a
summary of JVM and native information (excluding the contents of the Java heap),
and heap dump files contain only summary information about the Java heap. See
Example 3 listed previously; context 4 is derived from a heap dump file:

Source : file:/D:/Samples/multi-image.zip#heapdump.20111115.093819.4336.0001.phd
4 : JRE 1.6.0 Windows 7 amd64-64 build 20111105_94283 (pxa6460_26sr1-20120302_01(SR2))

If you select this context, and run the info system command, some data is shown
as unavailable:
CTX:0> context 4
CTX:4> info system
Machine OS: Windows 7
Machine name: data unavailable
Machine IP address(es):

data unavailable
System memory: data unavailable

However, because this context is for a heap dump file, the info class command
can provide a summary of the Java heap:
CTX:4> info class
instances total size class name
0 0 sun/io/Converters
1 16 com/ibm/tools/attach/javaSE/FileLock$syncObject
2 32 com/ibm/tools/attach/javaSE/AttachHandler$syncObject
1 40 sun/nio/cs/UTF_16LE
....
Total number of objects: 6178
Total size of objects: 2505382

Processing system dumps
Some system dumps must be processed before you can examine them with the
dump viewer.

Chapter 11. Troubleshooting and support 91

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

|

To analyze system dumps from Linux and AIX platforms, copies of executable files
and libraries are required along with the system dump. You must run the jextract
utility or the Diagnostic Collector provided in the SDK to collect these files on the
machine that produced the system dump. The parameters for the jextract
command are:
jextract <dump_file_name> [<zip_file>]

This command generates a compressed (.zip) file containing the system dump and
the required executable file and libraries.

For system dumps generated from a IBM J9 2.6 virtual machine in IBM SDK, Java
Technology Edition, Version 6 on Windows and z/OS platforms, you no longer
need to run the jextract tool.

For system dumps generated from an IBM J9 2.4 virtual machine in Java v6, or
from an IBM J9 2.3 virtual machine in Java v5.0, you must continue to run the
jextract utility for all platforms.

Dump viewer: jdmpview

The dump viewer is a utility supplied in the SDK that allows you to examine the
contents of system dumps. For system dumps generated from a IBM J9 2.6 virtual
machine in IBM SDK, Java Technology Edition, Version 6, you no longer need to
specify a metadata file when using the dump viewer. The parameters for the
jdmpview command are:
jdmpview -core <system dump file> [-xml <xml file>]

-core <system dump file>
Specify a system dump filename.

-xml <xml file>
Specify a dump metadata file. Not required for system dumps generated from
an IBM J9 2.6 virtual machine in IBM SDK, Java Technology Edition, Version 6.

Using the dump viewer in batch mode
For long running or routine jobs, jdmpview can be used in batch mode.

You can run a single command without specifying a command file by appending
the command to the end of the jdmpview command line. For example:
jdmpview -core mycore.dmp info class

When specifying jdmpview commands that accept a wildcard parameter, you must
replace the wildcard symbol with ALL to prevent the shell interpreting the wildcard
symbol. For example, in interactive mode, the command info thread * must be
specified as:
jdmpview -core mycore.dmp info thread ALL

Batch mode is controlled with the following command-line options:

-cmdfile <path to command file>
A file containing a series of jdmpview commands. These commands are read
and run sequentially.

-charset <character set name>
The character set for the commands specified in -cmdfile.

The character set name must be a supported charset as defined in
java.nio.charset.Charset. For example, US-ASCII.

92 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|
|
|
|
|

|

|
|

|
|

|
|

|

|
|
|
|

|

|

|
|
|

|
|

|
|

-outfile <path to output file>
The file to record any output generated by commands.

-overwrite
If the file specified in -outfile exists, this option overwrites the file.

Consider a command file, commands.txt with the following entries:
info system
info proc

The jdmpview command can be run in the following way:
jdmpview -outfile out.txt [-overwrite] -cmdfile commands.txt -core <path to core file>

An error message is shown if the output file exists and you do not specify the
-overwrite option.

The following output is shown in the console and in the output file, out.txt:
DTFJView version 2.1.1, using DTFJ API version 1.7
Loading image from DTFJ...

Available contexts (* = currently selected context) :

*0 : PID: 14279 : JRE 1.6.0 Linux x86-32 build 20111001_91728 (pxi3260_26sr1-20111004_01(SR1)

> info system

Machine OS: Linux
Machine name: mysystem
Machine IP address(es):

127.0.1.1
System memory: 4146188288

Java version :

Java(TM) SE Runtime Environment(build JRE 1.6.0 Linux x86-32 build 20111001_91728 (pxi3260_26sr1-
20111004_01(SR1)))
IBM J9 VM(JRE 1.6.0 IBM J9 2.6 Linux x86-32 20111001_91728 (JIT enabled, AOT enabled)
J9VM - R26_JVM_26_20110930_1540_B91699
JIT - r11_20110916_20778
GC - R26_JVM_26_20110923_1426_B91192)

> info proc

Native thread IDs:
5854 5871

Command line arguments
java -Xdump:system:events=vmstop -version

Environment variables:
DISPLAY=:0.0
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games
COLORTERM=gnome-terminal
DESKTOP_SESSION=gnome-classic
SHELL=/bin/bash

OLDPWD=/home/bczapp
LANGUAGE=en_GB:en
WINDOWID=77594661
LANG=en_GB.UTF-8
GDM_KEYBOARD_LAYOUT=gb
IBM_JAVA_COMMAND_LINE=java -Xdump:system:events=vmstop -version

Chapter 11. Troubleshooting and support 93

|
|

|
|

|

|
|

|

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

GDM_LANG=en_GB
TERM=xterm
_=/usr/bin/java

...

Commands available in jdmpview
jdmpview is an interactive, command-line tool to explore the information from a
JVM system dump and perform various analysis functions.

cd <directory_name>
Changes the working directory to <directory_name>. The working directory is
used for log files. Logging is controlled by the set logging command. Use the
pwd command to query the current working directory.

deadlock
This command detects deadlock situations in the Java application that was
running when the system dump was produced. Example output:
deadlock loop:
thread: Thread-2 (monitor object: 0x9e32c8) waiting for =>
thread: Thread-3 (monitor object: 0x9e3300) waiting for =>
thread: Thread-2 (monitor object: 0x9e32c8)

Threads are identified by their Java thread name, whereas object monitors are
identified by the address of the object in the Java heap. You can obtain further
information about the threads using the info thread * command. You can
obtain further information about the monitors using the x/J <0xaddr>
command.

In this example, the deadlock analysis shows that Thread-2 is waiting for a
lock held by Thread-3, which is in turn waiting for a lock held earlier by
Thread-2.

find <pattern>,<start_address>,<end_address>,<memory_boundary>,
<bytes_to_print>,<matches_to_display>

This command searches for <pattern> in the memory segment from
<start_address> to <end_address> (both inclusive), and shows the number of
matching addresses you specify with <matches_to_display>. You can also display
the next <bytes_to_print> bytes for the last match.

By default, the find command searches for the pattern at every byte in the
range. If you know the pattern is aligned to a particular byte boundary, you
can specify <memory_boundary> to search every <memory_boundary> bytes. For
example, if you specify a <memory_boundary> of "4", the command searches for
the pattern every 4 bytes.

findnext
Finds the next instance of the last string passed to find or findptr. It repeats
the previous find or findptr command, depending on which one was issued
last, starting from the last match.

findptr <pattern>,<start_address>,<end_address>,<memory_boundary>,
<bytes_to_print>,<matches_to_display>

Searches memory for the given pointer. findptr searches for <pattern> as a
pointer in the memory segment from <start_address> to <end_address> (both
inclusive), and shows the number of matching addresses you specify with
<matches_to_display>. You can also display the next <bytes_to_print> bytes for
the last match.

By default, the findptr command searches for the pattern at every byte in the
range. If you know the pattern is aligned to a particular byte boundary, you

94 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|
|
|
|

|

can specify <memory_boundary> to search every <memory_boundary> bytes. For
example, if you specify a <memory_boundary> of "4", the command searches for
the pattern every 4 bytes.

help [<command_name>]
Shows information for a specific command. If you supply no parameters, help
shows the complete list of supported commands.

info thread [*|<thread_name>]
Displays information about Java and native threads. The following information
is displayed for all threads (“*”), or the specified thread:
v Thread id
v Registers
v Stack sections
v Thread frames: procedure name and base pointer
v Thread properties: list of native thread properties and their values. For

example: thread priority.
v Associated Java thread, if applicable:

– Name of Java thread
– Address of associated java.lang.Thread object
– State (shown in JVMTI and java.lang.Thread.State formats)
– The monitor the thread is waiting for
– Thread frames: base pointer, method, and filename:line

If you supply no parameters, the command shows information about the
current thread.

info system
Displays the following information about the system that produced the core
dump:
v amount of memory
v operating system
v virtual machine or virtual machines present

info class [<class_name>] [-sort:<name>|<count>|<size>]
Displays the inheritance chain and other data for a given class. If a class name
is passed to info class, the following information is shown about that class:
v name
v ID
v superclass ID
v class loader ID
v modifiers
v number of instances and total size of instances
v inheritance chain
v fields with modifiers (and values for static fields)
v methods with modifiers

If no parameters are passed to info class, the following information is shown:
v the number of instances of each class.
v the total size of all instances of each class.
v the class name
v the total number of instances of all classes.
v the total size of all objects.

The -sort option allows the list of classes to be sorted by name (default), by
number of instances of each class, or by the total size of instances of each class.

Chapter 11. Troubleshooting and support 95

|
|

|

|
|

info proc
Displays threads, command-line arguments, environment variables, and shared
modules of the current process.

Note: To view the shared modules used by a process, use the info sym
command.

info jitm
Displays JIT compiled methods and their addresses:
v Method name and signature
v Method start address
v Method end address

info lock
Displays a list of available monitors and locked objects

info sym
Displays a list of available modules. For each process in the address spaces,
this command shows a list of module sections for each module, their start and
end addresses, names, and sizes.

info mmap [<address>] [-verbose] [-sort:<size>|<address>]
Displays a summary list of memory sections in the process address space, with
start and end address, size, and properties. If an address parameter is
specified, the results show details of only the memory section containing the
address. If -verbose is specified, full details of the properties of each memory
section are displayed. The -sort option allows the list of memory sections to
be sorted by size or by start address (default).

info heap [*|<heap_name>]
If no parameters are passed to this command, the heap names and heap
sections are shown.

Using either “*” or a heap name shows the following information about all
heaps or the specified heap:
v heap name
v (heap size and occupancy)
v heap sections

– section name
– section size
– whether the section is shared
– whether the section is executable
– whether the section is read only

heapdump [<heaps>]
Generates a Heapdump to a file. You can select which Java heaps to dump by
listing the heap names, separated by spaces. To see which heaps are available,
use the info heap command. By default, all Java heaps are dumped.

hexdump <hex_address> <bytes_to_print>
Displays a section of memory in a hexdump-like format. Displays
<bytes_to_print> bytes of memory contents starting from <hex_address>.

+ Displays the next section of memory in hexdump-like format. This command is
used with the hexdump command to enable easy scrolling forwards through
memory. The previous hexdump command is repeated, starting from the end
of the previous one.

- Displays the previous section of memory in hexdump-like format. This
command is used with the hexdump command to enable easy scrolling

96 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|
|
|
|
|
|
|

backwards through memory. The previous hexdump command is repeated,
starting from a position before the previous one.

pwd
Displays the current working directory, which is the directory where log files
are stored.

quit
Exits the core file viewing tool; any log files that are currently open are closed
before exit.

set heapdump <options>
Configures Heapdump generation settings.

The options are:

phd
Set the Heapdump format to Portable Heapdump, which is the default.

txt
Set the Heapdump format to classic.

file <file>
Set the destination of the Heapdump.

multiplefiles [on|off]
If multiplefiles is set to on, each Java heap in the system dump is written
to a separate file. If multiplefiles is set to off, all Java heaps are written
to the same file. The default is off.

set logging <options>
Configures logging settings, starts logging, or stops logging. This parameter
enables the results of commands to be logged to a file.

The options are:

[on|off]
Turns logging on or off. (Default: off)

file <filename>
sets the file to log to. The path is relative to the directory returned by the
pwd command, unless an absolute path is specified. If the file is set while
logging is on, the change takes effect the next time logging is started. Not
set by default.

overwrite [on|off]
Turns overwriting of the specified log file on or off. When overwrite is off,
log messages are appended to the log file. When overwrite is on, the log
file is overwritten after the set logging command. (Default: off)

redirect [on|off]
Turns redirecting to file on or off, with off being the default. When logging
is set to on:
v a value of on for redirect sends non-error output only to the log file.
v a value of off for redirect sends non-error output to the console and log

file.

Redirect must be turned off before logging can be turned off. (Default: off)

show heapdump <options>
Displays the current Heapdump generation settings.

show logging
Displays the current logging settings:

Chapter 11. Troubleshooting and support 97

v set_logging = [on|off]
v set_logging_file =
v set_logging_overwrite = [on|off]
v set_logging_redirect = [on|off]
v current_logging_file =
v The file that is currently being logged to might be different from

set_logging_file, if that value was changed after logging was started.

whatis <hex_address>
Displays information about what is stored at the given memory address,
<hex_address>. This command examines the memory location at <hex_address>
and tries to find out more information about this address. For example:
--
> whatis 0x8e76a8

heap #1 - name: Default@19fce8
0x8e76a8 is within heap segment: 8b0000 -- cb0000
0x8e76a8 is start of an object of type java/lang/Thread
--

x/ (examine)
Passes the number of items to display and the unit size, as listed in the
following table, to the sub-command. For example, x/12bd. This command is
similar to the use of the x/ command in gdb, including the use of defaults.

Table 8. Unit sizes

Abbreviation Unit Size

b Byte 8-bit

h Half word 16-bit

w Word 32-bit

g Giant word 64-bit

x/J [<class_name>|<0xaddr>]
Displays information about a particular object, or all objects of a class. If
<class_name> is supplied, all static fields with their values are shown, followed
by all objects of that class with their fields and values. If an object address (in
hex) is supplied, static fields for that object's class are not shown; the other
fields and values of that object are printed along with its address.

Note: This command ignores the number of items and unit size passed to it by
the x/ command.

x/D <0xaddr>
Displays the integer at the specified address, adjusted for the hardware
architecture this dump file is from. For example, the file might be from a big
endian architecture.

Note: This command uses the number of items and unit size passed to it by
the x/ command.

x/X <0xaddr>
Displays the hex value of the bytes at the specified address, adjusted for the
hardware architecture this dump file is from. For example, the file might be
from a big endian architecture.

Note: This command uses the number of items and unit size passed to it by
the x/ command.

98 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

x/K <0xaddr>
Where the size is defined by the pointer size of the architecture, this parameter
shows the value of each section of memory. The output is adjusted for the
hardware architecture this dump file is from, starting at the specified address.
It also displays a module with a module section and an offset from the start of
that module section in memory if the pointer points to that module section. If
no symbol is found, it displays a “*” and an offset from the current address if
the pointer points to an address in 4KB (4096 bytes) of the current address.
Although this command can work on an arbitrary section of memory, it is
probably more useful on a section of memory that refers to a stack frame. To
find the memory section of a thread stack frame, use the info thread
command.

Note: This command uses the number of items and unit size passed to it by
the x/ command.

Working with dumps containing multiple JVMs
On z/OS, system dumps can contain multiple address spaces. Multiple JVMs can
also share a single address space. The jdmpview command lets you work with these
dumps by separating the dump into contexts.

Start jdmpview to see a list of available contexts:
CTX:5> context
Available contexts (* = currently selected context) :

0 : ASID: 0x1 : No JRE : No JRE
1 : ASID: 0x3 : No JRE : No JRE
2 : ASID: 0x4 : No JRE : No JRE
3 : ASID: 0x6 : No JRE : No JRE
4 : ASID: 0x7 : No JRE : No JRE

*5 : ASID: 0x73 EDB: 0x83d2053a0 : JRE 1.6.0 z/OS s390x-64 build 20110217_75924 (pmz6460_26-20110228_01)
6 : ASID: 0x73 EDB: 0x8004053a0 : JRE 1.6.0 z/OS s390x-64 build 20110217_75924 (pmz6460_26-20110228_01)
7 : ASID: 0x73 EDB: 0x4a7bd9e8 : No JRE
8 : ASID: 0xffff : No JRE : No JRE

CTX:5>

Each address space (ASID) is listed as a separate context. Each JVM occupying a
single address space is also listed as a separate context. In the example, contexts 5
and 6 in the address space 0x73 are separate JVMs. The prompt CTX:5> indicates
the context that is currently in use. If you run a command at the prompt, the
action is applied to the JVM occupying the current context.

Run the context command to see all available contexts, including JVM build
information for JVMs, where appropriate:

CTX:5> context
Available contexts (* = currently selected context) :

0 : ASID: 0x1 : No JRE : No JRE
1 : ASID: 0x3 : No JRE : No JRE
2 : ASID: 0x4 : No JRE : No JRE
3 : ASID: 0x6 : No JRE : No JRE
4 : ASID: 0x7 : No JRE : No JRE

*5 : ASID: 0x73 EDB: 0x83d2053a0 :
Java(TM) SE Runtime Environment(build JRE 1.6.0 z/OS s390x-64 build 20110217_75924 (pmz6460_26-

20110228_01))
IBM J9 VM(JRE 1.6.0 IBM J9 2.6 z/OS s390x-64 20110217_75924 (JIT enabled, AOT enabled)
J9VM - R26_Java626_GA_20110217_1713_B75924
JIT - r11_20110215_18645
GC - R26_Java626_GA_20110217_1713_B75924)

Chapter 11. Troubleshooting and support 99

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

6 : ASID: 0x73 EDB: 0x8004053a0 :
Java(TM) SE Runtime Environment(build JRE 1.6.0 z/OS s390x-64 build 20110217_75924 (pmz6460_26-

20110228_01))
IBM J9 VM(JRE 1.6.0 IBM J9 2.6 z/OS s390x-64 20110217_75924 (JIT enabled, AOT enabled)
J9VM - R26_Java626_GA_20110217_1713_B75924
JIT - r11_20110215_18645
GC - R26_Java626_GA_20110217_1713_B75924)

7 : ASID: 0x73 EDB: 0x4a7bd9e8 : No JRE
8 : ASID: 0xffff : No JRE : No JRE

You can switch between contexts by typing context <n>, where <n> is the context
you want to switch to. For example:
CTX:5> context 6
CTX:6>

Following this switch, the output from the context command is:
CTX:6> context
Available contexts (* = currently selected context) :

0 : ASID: 0x1 : No JRE : No JRE
1 : ASID: 0x3 : No JRE : No JRE
2 : ASID: 0x4 : No JRE : No JRE
3 : ASID: 0x6 : No JRE : No JRE
4 : ASID: 0x7 : No JRE : No JRE
5 : ASID: 0x73 EDB: 0x83d2053a0 :
Java(TM) SE Runtime Environment(build JRE 1.6.0 z/OS s390x-64 build 20110217_75924 (pmz6460_26-

20110228_01))
IBM J9 VM(JRE 1.6.0 IBM J9 2.6 z/OS s390x-64 20110217_75924 (JIT enabled, AOT enabled)
J9VM - R26_Java626_GA_20110217_1713_B75924
JIT - r11_20110215_18645
GC - R26_Java626_GA_20110217_1713_B75924)

*6 : ASID: 0x73 EDB: 0x8004053a0 :
Java(TM) SE Runtime Environment(build JRE 1.6.0 z/OS s390x-64 build 20110217_75924 (pmz6460_26-

20110228_01))
IBM J9 VM(JRE 1.6.0 IBM J9 2.6 z/OS s390x-64 20110217_75924 (JIT enabled, AOT enabled)
J9VM - R26_Java626_GA_20110217_1713_B75924
JIT - r11_20110215_18645
GC - R26_Java626_GA_20110217_1713_B75924)

7 : ASID: 0x73 EDB: 0x4a7bd9e8 : No JRE
8 : ASID: 0xffff : No JRE : No JRE

Tracing Java applications and the JVM
JVM trace is a trace facility that is provided in all IBM-supplied JVMs with
minimal affect on performance. In most cases, the trace data is kept in a compact
binary format, that can be formatted with the Java formatter that is supplied.

Tracing is enabled by default, together with a small set of trace points going to
memory buffers. You can enable trace points at run time by using levels,
components, group names, or individual trace point identifiers.

Trace is a powerful tool to help you diagnose the JVM.

Default tracing
There are some changes to default assertion tracing for the IBM J9 2.6 virtual
machine.

Default assertion tracing

The JVM includes assertions, implemented as special trace points. By default,
internal assertions are detected and diagnostic logs are produced to help assess the
error.

100 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|
|
|
|
|
|
|
|
|

|
|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|
|

|

|
|
|

|

|
|
|

Assertion failures often indicate a serious problem, and the JVM usually stops
immediately. Send a service request to IBM, including the standard error output
and any diagnostic files that are produced.

When an assertion trace point is reached, a message like the following output is
produced on the standard error stream:
16:43:48.671 0x10a4800 j9vm.209 * ** ASSERTION FAILED ** at jniinv.c:251:
((javaVM == ((void *)0)))

This error stream is followed with information about the diagnostic logs produced:
JVMDUMP007I JVM Requesting System Dump using ’core.20060426.124348.976.dmp’
JVMDUMP010I System Dump written to core.20060426.124348.976.dmp
JVMDUMP007I JVM Requesting Snap Dump using ’Snap0001.20060426.124648.976.trc’
JVMDUMP010I Snap Dump written to Snap0001.20060426.124648.976.trc

Assertion failures might occur early during JVM startup, before trace is enabled. In
this case, the assert message has a different format, and is not prefixed by a
timestamp or thread ID. For example:
** ASSERTION FAILED ** j9vmutil.15 at thrinfo.c:371 Assert_VMUtil_true((
publicFlags & 0x200))

Assertion failures that occur early during startup cannot be disabled. These failures
do not produce diagnostic dumps, and do not cause the JVM to stop.

Using the trace formatter
The trace formatter is a Java program that converts binary trace point data in a
trace file to a readable form. The formatter requires the J9TraceFormat.dat file,
which contains the formatting templates. The formatter produces a file containing
header information about the JVM that produced the binary trace file, a list of
threads for which trace points were produced, and the formatted trace points with
their timestamp, thread ID, trace point ID and trace point data.

To use the trace formatter on a binary trace file type:
java com.ibm.jvm.TraceFormat <input_file> [<output_file>] [options]

where <input_file> is the name of the binary trace file to be formatted, and
<output_file> is the name of the output file.

If you do not specify an output file, the output file is called <input_file>.fmt.

The size of the heap needed to format the trace is directly proportional to the
number of threads present in the trace file. For large numbers of threads the
formatter might run out of memory, generating the error OutOfMemoryError. In this
case, increase the heap size using the -Xmx option.

Available options

The following options are available with the trace formatter:

-datfile=<file1.dat>[,<file2.dat>]
A comma-separated list of trace formatting data files. By default, the files used
are:$JAVA_HOME/lib/J9TraceFormat.dat and $JAVA_HOME/lib/TraceFormat.dat

-format_time=yes|no
Specifies whether to format the time stamps into human readable form. The
default is yes.

Chapter 11. Troubleshooting and support 101

|
|
|

|
|

|
|

|

|
|
|
|

|
|
|

|
|

|
|

|
|
|
|
|
|
|

|

|

|
|

|

|
|
|
|

|

|

|
|
|

|
|
|

-help
Displays usage information.

-indent
Indents trace messages at each Entry trace point and outdents trace messages
at each Exit trace point. The default is not to indent the messages.

-summary
Prints summary information to the screen without generating an output file.

-threads=<thread id>[,<thread id>]...
Filters the output for the given thread IDs only. thread id is the ID of the
thread, which can be specified in decimal or hex (0x) format. Any number of
thread IDs can be specified, separated by commas.

-timezone=+|-HH:MM
Specifies the offset from UTC, as positive or negative hours and minutes, to
apply when formatting timestamps.

-verbose
Output detailed warning and error messages, and performance statistics.

Shared classes diagnostic data
Understanding how to diagnose problems that might occur helps you to use
shared classes mode.

Deploying shared classes
There are some changes to class data sharing that require consideration.

When you enable class data sharing, there are a number of deployment
considerations. These considerations are detailed in the IBM SDK, Java Technology
Edition, Version 6 Diagnostics Guide, see http://www.ibm.com/support/
knowledgecenter/SSYKE2_6.0.0/com.ibm.java.doc.diagnostics.60/diag/tools/
shcpd_deploying.html. For this release, there are some changes to class data
sharing that can have additional implications on cache performance.

Cache naming:

Cache naming enhancements include the ability to use the
-Xshareclasses:cacheDirPerm=<permission> suboption to specify permissions for
the cache directory.

If you use the -Xshareclasses:cachedir=<dir> suboption to specify a cache
directory that does not already exist, you can also use the
-Xshareclasses:cacheDirPerm=<permission> suboption to specify permissions for
the directory when it is created. This suboption is available only on AIX, UNIX
and z/OS operating systems. You can use this suboption to restrict access to the
cache directory, however this suboption can conflict with the groupAccess
suboption, which is used to set permissions on a cache. The cachedir suboption
also affects the permissions of persistent caches. For more information about
-Xshareclasses suboptions, see “-Xshareclasses” on page 155.

Cache performance:

Performance improvements include the ability to cache JIT data, and the ability to
reserve a portion of the cache for specific activities.

102 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|
|

|
|
|

|
|

|
|
|
|

|
|
|

|
|

|

|

|

|
|
|

|
|
|
|
|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.doc.diagnostics.60/diag/tools/shcpd_deploying.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.doc.diagnostics.60/diag/tools/shcpd_deploying.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.doc.diagnostics.60/diag/tools/shcpd_deploying.html

Caching JIT data

The JVM can automatically store a small amount of JIT data in the cache when it is
populated with classes. The JIT data enables any subsequent JVMs attaching to the
cache to either start faster, run faster, or both.

You can use the -Xshareclasses:nojitdata, -Xscminjitdata<size>, and
-Xscmaxjitdata<size> options to control the use of JIT data in the cache.

JIT data is associated with a specific version of a class in the cache. If new classes
are added to the cache as a result of a file system update, new JIT data can be
generated for those classes. If a particular class becomes stale, the JIT data
associated with that class also becomes stale. If a class is redeemed, the JIT data
associated with that class is also redeemed. JIT data is not shared between multiple
versions of the same class.

The total amount of JIT data can be limited using -Xscmaxjitdata<size>, and cache
space can be reserved for JIT data using -Xscminjitdata<size>.

In general, the default settings provide significant performance benefits and use
only a small amount of cache space. However, if you want to prevent the JVM
storing any JIT data, you can specify -Xshareclasses:nojitdata.

Class Debug Area

A portion of the shared classes cache is reserved for storing the class attribute
information LineNumberTable and LocalVariableTable, which are used for printing
stack traces and for Java debugging. By storing these attributes in a separate
region, the operating system can decide whether to keep the region in memory or
on disk, depending on whether the data is being used.

You can control the size of the Class Debug Area using the -Xscdmx command-line
option. Use any of the following variations to specify a Class Debug Area with a
size of 1 MB:
v -Xscdmx1048576

v -Xscdmx1024k

v -Xscdmx1m

The number of bytes passed to –Xscdmx must always be less than the total cache
size. This value is always rounded down to the nearest multiple of the system
page size.

The amount of LineNumberTable and LocalVariableTable attribute information
stored for different applications varies. When the Class Debug Area is full, use
-Xscdmx to increase the size. When the Class Debug Area is not full, create a
smaller region, which increases the available space for other artifacts elsewhere in
the cache.

The size of the Class Debug Area affects available space for other artifacts, like
AOT code, in the shared classes cache. Performance might be adversely affected if
the cache is not sized appropriately. You can improve performance by using the
-Xscdmx option to resize the Class Debug Area, or by using the -Xscmx option to
create a larger cache.

If you start the JVM with -Xnolinenumbers when creating a new shared classes
cache, the Class Debug Area is not created. The option -Xnolinenumbers advises

Chapter 11. Troubleshooting and support 103

the JVM not to load any class debug information, so there is no need for this
region. If -Xscdmx is also used on the command line to specify a non zero debug
area size, then a debug area is created despite the use of -Xnolinenumbers.

Raw Class Data Area

When a cache is created with -Xshareclasses:enableBCI, a portion of the shared
classes cache is reserved for storing the original class data bytes. Storing this data
in a separate region allows the operating system to decide whether to keep the
region in memory or on disk, depending on whether the data is being used.
Because the amount of raw class data stored in this area can vary for an
application, the size of the Raw Class Data Area can be modified using the rcdSize
suboption. For example, these variations specify a Raw Class Data Area with a size
of 1 MB:
-Xshareclasses:enableBCI,rcdSize=1048576
-Xshareclasses:enableBCI,rcdSize=1024k
-Xshareclasses:enableBCI,rcdSize=1m

The number of bytes passed to rcdSize must always be less than the total cache
size. This value is always rounded down to the nearest multiple of the system
page size. As with the Class Debug Area, the size of this area affects available
space for other artifacts, such as AOT code, in the shared classes cache.
Performance might be adversely affected if the cache is not sized appropriately.
When the cache is created without enableBCI, the default size of the Raw Class
Data Area is 0 bytes. However, when the enableBCI is used, a portion of the cache
is automatically reserved.

Dealing with runtime bytecode modification
Modifying bytecode at run time is a popular way to engineer required function
into classes. Sharing modified bytecode improves startup time, especially when the
modification being used is expensive.

You can safely cache modified bytecode and share it between JVMs, but there are
several considerations to avoid potential problems. These considerations are
detailed in the IBM SDK, Java Technology Edition, Version 6 Diagnostics Guide,
see http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/
com.ibm.java.doc.diagnostics.60/diag/tools/shcpd_runtime_bytecode_mod.html.
For this release, there are new features that require further consideration.

Using the JVMTI ClassFileLoadHook with cached classes:

The -Xshareclasses:enableBCI suboption improves startup performance without
using a modification context, when using JVMTI class modification. This suboption
allows classes loaded from the shared cache to be modified using a JVMTI
ClassFileLoadHook, or a java.lang.instrument agent, and prevents modified classes
being stored in the shared classes cache.

Modification contexts allow classes modified at run time by JVMTI agents to be
stored, logically separated, in the cache. This separation prevents conflicts with
versions of the same class that are being used by other JVMs connected to the
cache. However, there are a number of issues:
v Loading classes from the cache does not generate a callback to the JVMTI

ClassFileLoadHook event, which prevents a JVMTI agent making any
subsequent modifications. The ClassFileLoadHook event expects original class
data to be passed back. This data is typically not available in the shared cache
unless the cache was created with a JVMTI agent that is retransformation

104 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|

|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.doc.diagnostics.60/diag/tools/shcpd_runtime_bytecode_mod.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.doc.diagnostics.60/diag/tools/shcpd_runtime_bytecode_mod.html

capable. This constraint might be undesirable for JVMTI or java.lang.instrument
agents that want the ClassFileLoadHook event to be triggered every time,
whether the class is loaded from the cache, or from the disk.

v If the JVMTI agent applies different runtime modifications every time the
application is run, there will be multiple versions of the same class in the cache
that cannot be reused or shared across JVMs.

To address these issues, use the suboption -Xshareclasses:enableBCI. When using
this suboption, any class modified by a JVMTI or java.lang.instrument agent is not
stored in the cache. Classes which are not modified are stored as before. The
-Xshareclasses:enableBCI suboption causes the JVM to store original class byte
data in the cache, which allows the ClassFileLoadHook event to be triggered for all
classes loaded from the cache. When using this suboption, the cache size might
need to be increased with -Xscmx<size>.

Using this option can improve the startup performance when JVMTI agents,
java.lang.instrument agents, or both, are being used to modify classes. If you do
not use this option, the JVM is forced to load classes from disk and find the
equivalent class in the shared cache by doing a comparison. Because loading from
disk and class comparison is done for every class loaded, the startup performance
can be affected. Using -Xshareclasses:enableBCI loads unmodified classes directly
from the shared cache, improving startup performance, while still allowing these
classes to be modified by the JVMTI agents, java.lang.instrument agents, or both.

Using -Xshareclasses:enableBCI with a modification context is still valid.
However, -Xshareclasses:enableBCI prevents modified classes from being stored
in the cache. Although unmodified classes are stored in the cache and logically
separated by the specified modification context, using a modification context with
-Xshareclasses:enableBCI does not provide any benefits and should be avoided.

When a new shared cache is created with -Xshareclasses:enableBCI, a portion of
the shared cache is reserved for storing the original class data in the shared classes
cache. Storing this data in a separate region allows the operating system to decide
whether to keep the region in memory or on disk, depending on whether the data
is being used. When this area is full, the original class data is stored with the rest
of the shared class data. For more information about this area, known as the Raw
Class Data Area, see “Cache performance” on page 102.

Using the Java Helper API
Classes are shared by the bootstrap class loader internally in the JVM. Any other
Java class loader must use the Java Helper API to find and store classes in the
shared class cache.

The Helper API provides a set of flexible Java interfaces so that Java class loaders
can use the shared classes features in the JVM.

The Helper API classes are contained in the com.ibm.oti.shared package. Further
information about the Java Helper API is provided in the Java 6 Diagnostics guide.
See http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/
com.ibm.java.doc.diagnostics.60/diag/tools/shcpd_helper.html.

Utility APIs:

Use these APIs to obtain information about shared caches.

Chapter 11. Troubleshooting and support 105

|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.doc.diagnostics.60/diag/tools/shcpd_helper.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.doc.diagnostics.60/diag/tools/shcpd_helper.html

com.ibm.oti.shared.SharedClassUtilities
You can use these APIs to get information about shared class caches in a
directory, and to remove specified shared class caches. The type of
information available for each cache includes:
v The cache name.
v The cache size.
v The amount of free space in the cache.
v An indication of compatibility with the current JVM.
v Information about the type of cache; persistent or non-persistent.
v The last detach time.
v The Java version that created the cache.
v Whether the cache is for a 32-bit or 64-bit JVM.
v Whether the cache is corrupted.

com.ibm.oti.shared.SharedClassCacheInfo
This class is used by com.ibm.oti.shared.SharedClassUtilities to store
information about a shared class cache and provides API methods to
retrieve that information.

For information about the related IBM JVMTI extensions for shared class caches,
see “Finding shared class caches” on page 129, and “Removing a shared class
cache” on page 131.

Understanding shared classes diagnostic output
When running in shared classes mode, a number of diagnostic tools can help you.
The verbose options are used at run time to show cache activity and you can use
the printStats and printAllStats utilities to analyze the contents of a shared class
cache.

This section tells you how to interpret the output.

printStats utility:

The printStats utility prints summary information about the specified cache to the
standard error output. Information about zip caches, the amount of JIT data stored,
and the size of the class debug area, is additional to the information provided for
IBM SDK, Java Technology Edition, Version 6. You can optionally specify one or
more types of cache content, such as AOT data or tokens, to see more detailed
information about that type of content. To see detailed information about all the
types of content in the cache, use the printAllStats utility instead.

The printStats utility is a suboption of -Xshareclasses. You can specify a cache
name using the name=<name> parameter. printStats is a cache utility, so the JVM
reports the information about the specified cache and then exits.

The following output shows example results after running the printStats utility
without a parameter, to generate summary data only:
Cache created with:
-Xnolinenumbers = false
BCI Enabled = true

Cache contains only classes with line numbers

base address = 0x00002AAACE282000
end address = 0x00002AAACF266000
allocation pointer = 0x00002AAACE3A61B0

106 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|
|
|

|
|
|
|
|
|
|
|
|

cache size = 16776608
free bytes = 6060232
ROMClass bytes = 1196464
AOT bytes = 0
Reserved space for AOT bytes = -1
Maximum space for AOT bytes = -1
JIT data bytes = 0
Reserved space for JIT data bytes = -1
Maximum space for JIT data bytes = -1
Zip cache bytes = 1054352
Data bytes = 114080
Metadata bytes = 24312
Metadata % used = 1%
Class debug area size = 1331200
Class debug area used bytes = 150848
Class debug area % used = 11%
Raw class data area size = 6995968
Raw class data used bytes = 1655520
Raw class data area % used = 23%

ROMClasses = 488
AOT Methods = 0
Classpaths = 1
URLs = 0
Tokens = 0
Zip caches = 22
Stale classes = 0
% Stale classes = 0%

Cache is 28% full

In the example output, -Xnolinenumbers = false means the cache was created
without the -Xnolinenumbers option being specified.

BCI Enabled = true indicates that the cache was created with the
-Xshareclasses:enableBCI suboption.

One of the following messages is displayed to indicate the line number status of
classes in the shared cache:

Cache contains only classes with line numbers
JVM line number processing was enabled (the -Xnolinenumbers option was
not specified) for all the classes that were put in this shared cache. All
classes in the cache contain line numbers if the original classes contained
line number data.

Cache contains only classes without line numbers
JVM line number processing was disabled (the -Xnolinenumbers option
was specified) for all the classes that were put in this shared cache, so none
of the classes contain line numbers.

Cache contains classes with line numbers and classes without line numbers
JVM line number processing was enabled for some classes and disabled for
others (the -Xnolinenumbers option was specified when some of the classes
were added to the cache).

The following summary data is displayed:

baseAddress and endAddress
Give the boundary addresses of the shared memory area containing the
classes.

Chapter 11. Troubleshooting and support 107

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

allocPtr
Is the address where ROMClass data is currently being allocated in the
cache.

cache size and free bytes
cache size shows the total size of the shared memory area in bytes, and
free bytes shows the free bytes remaining.

ROMClass bytes
Is the number of bytes of class data in the cache.

AOT bytes
Is the number of bytes of Ahead Of Time (AOT) compiled code in the
cache.

Reserved space for AOT bytes
The number of bytes reserved for AOT compiled code in the cache.

Maximum space for AOT bytes
The maximum number of bytes of AOT compiled code that can be stored
in the cache.

JIT data bytes
Is the number of bytes of JIT-related data stored in the cache.

Reserved space for JIT data bytes
The number of bytes reserved for JIT-related data in the cache.

Maximum space for JIT data bytes
The maximum number of bytes of JIT-related data that can be stored in the
cache.

Zip cache bytes
Is the number of zip entry cache bytes stored in the cache.

Data bytes
Is the number of bytes of non-class data stored by the JVM.

Metadata bytes
Is the number of bytes of data stored to describe the cached classes.

Metadata % used
Shows the proportion of metadata bytes to class bytes; this proportion
indicates how efficiently cache space is being used. The value shown does
consider the Class debug area size.

Class debug area size
Is the size in bytes of the Class Debug Area. This area is reserved to store
LineNumberTable and LocalVariableTable class attribute information.

Class debug area bytes used
Is the size in bytes of the Class Debug Area that contains data.

Class debug area % used
Is the percentage of the Class Debug Area that contains data.

Raw class data area size
The size in bytes of the Raw Class Data Area. This area is reserved when
the cache is created with -Xshareclasses:enableBCI, or
-Xshareclasses:rcdSize=nnn. The original class file bytes for a ROMClass
are stored here when enableBCI is used to create the cache.

Raw class data used bytes
The size in bytes of the Raw Class Data Area that contains data.

108 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|
|

|
|
|

|
|

|
|
|

|
|
|
|
|

|
|

Raw class data area % used
The percentage of the Raw Class Data Area that contains data.

ROMClasses
Indicates the number of classes in the cache. The cache stores ROMClasses
(the class data itself, which is read-only) and it also stores information
about the location from which the classes were loaded. This information is
stored in different ways, depending on the Java SharedClassHelper API
used to store the classes. For more information, see “Using the Java Helper
API” on page 105.

AOT methods
Optionally, ROMClass methods can be compiled and the AOT code stored
in the cache. The # AOT methods information shows the total number of
methods in the cache that have AOT code compiled for them. This number
includes AOT code for stale classes.

Classpaths, URLs, and Tokens
Indicates the number of classpaths, URLs, and tokens in the cache. Classes
stored from a SharedClassURLClasspathHelper are stored with a
Classpath. Classes stored using a SharedClassURLHelper are stored with a
URL. Classes stored using a SharedClassTokenHelper are stored with a
Token. Most class loaders, including the bootstrap and application class
loaders, use a SharedClassURLClasspathHelper. The result is that it is most
common to see Classpaths in the cache.

The number of Classpaths, URLs, and Tokens stored is determined by a
number of factors. For example, every time an element of a Classpath is
updated, such as when a .jar file is rebuilt, a new Classpath is added to
the cache. Additionally, if “partitions” or “modification contexts” are used,
they are associated with the Classpath, URL, or Token. A Classpath, URL,
or Token is stored for each unique combination of partition and
modification context. For more information about partitions, see
../../../../com.ibm.java.doc.diagnostics.60/diag/tools/
shcpd_rbm_partitions.html. For more information about modification
contexts, see ../../../../com.ibm.java.doc.diagnostics.60/diag/tools/
shcpd_rbm_contexts.html.

Zip caches
The number of .zip files that have entry caches stored in the shared cache.

Stale classes
Are classes that have been marked as "potentially stale" by the cache code,
because of updates to Java classes. See ../../../../
com.ibm.java.doc.diagnostics.60/diag/tools/shcpd_dynamic.html.

% Stale classes
Is an indication of the proportion of classes in the cache that have become
stale.

Cache is XXX% full
Shows the percentage of the cache that is currently used. The value
displayed does not consider the Class debug area size. The calculation
for this value is:
% Full = ((’Cache Size’ - ’Debug Area Size’ - ’Free Bytes’) * 100) / (’Cache
Size’ - ’Debug Area Size’)

Chapter 11. Troubleshooting and support 109

|
|

Generating more detailed information

You can use a parameter to specify one or more types of cache content. The
printStats utility then provides more detailed information about that type of
content, in addition to the summary data described previously. The detailed output
is similar to the output from the printAllStats utility. For more information about
the different types of cache content and the printAllStats utility, see “printAllStats
utility.”

If you want to specify more than one type of cache content, use the plus symbol
(+) to separate the values:
printStats[=type_1[+type_2][...]]

For example, use printStats=classpath to see a list of class paths that are stored
in the shared cache, or printStats=romclass+url to see information about
ROMClasses and URLs.

The following data types are valid. The values are not case sensitive:

Help Prints a list of valid data types.

All Prints information about all the following data types in the shared cache.
This output is equivalent to the output produced by the printAllStats
utility.

Classpath
Lists the class paths that are stored in the shared cache.

URL Lists the URLs that are stored in the shared cache.

Token Lists the tokens that are stored in the shared cache.

ROMClass
Prints information about the ROMClasses that are stored in the shared
cache. This parameter does not print information about ROMMethods in
ROMClasses.

ROMMethod
Prints ROMClasses and the ROMMethods in them.

AOT Prints information about AOT compiled code in the shared cache.

JITprofile
Prints information about JIT data in the shared cache.

JIThint
Prints information about JIT data in the shared cache.

ZipCache
Prints information about zip entry caches that are stored in the shared
cache.

printAllStats utility:

The printAllStats utility is a suboption of -Xshareclasses, optionally taking a cache
name using name=<name>. Information about zip caches and JIT data is additional
to the information provided for IBM SDK, Java Technology Edition, Version 6.

ZipCache

110 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|

|
|
|
|
|
|

|
|

|

|
|
|

|

||

||
|
|

|
|

||

||

|
|
|
|

|
|

||

|
|

|
|

|
|
|

1: 0x042FE07C ZIPCACHE: luni-kernel.jar_347075_1272300300_1 Address: 0x042FE094 Size: 7898
1: 0x042FA878 ZIPCACHE: luni.jar_598904_1272300546_1 Address: 0x042FA890 Size: 14195
1: 0x042F71F8 ZIPCACHE: nio.jar_405359_1272300546_1 Address: 0x042F7210 Size: 13808
1: 0x042F6D58 ZIPCACHE: annotation.jar_13417_1272300554_1 Address: 0x042F6D70 Size: 1023

The first line in the output indicates that JVM 1 stored a zip entry cache
called luni-kernel.jar_347075_1272300300_1 in the shared cache. The
metadata for the zip entry cache is stored at address 0x042FE07C. The data
is written to the address 0x042FE094, and is 7898 bytes in size. Storing zip
entry caches for bootstrap jar files is controlled by the -Xzero:sharebootzip
sub option, which is enabled by default. The full -Xzero option is not
enabled by default. For more information about this option, see “-Xzero”
on page 151.

JIT data

1: 0xD6290368 JITPROFILE: getKeyHash Signature: ()I Address: 0xD55118C0
for ROMClass java/util/Hashtable$Entry at 0xD5511640.
2: 0xD6283848 JITHINT: loadClass Signature: (Ljava/lang/String;)Ljava/lang/Class; Address: 0xD5558F98
for ROMClass com/ibm/oti/vm/BootstrapClassLoader at 0xD5558AE0.

The JIT stores data in the shared classes cache in the form of JITPROFILE
and JITHINT entries to improve runtime performance. These outputs
expose the content of the shared cache and can be useful for diagnostic
purposes.

For more information, see the Diagnostic Guide topic about the printAllStats utility
provided with IBM SDK, Java Technology Edition, Version 6.

Garbage Collector diagnostic data
This section describes changes to garbage collection diagnostic data.

Verbose garbage collection logging
Verbose garbage collection logging has been redesigned, improving problem
diagnosis.

With earlier releases of the IBM SDK, JavaTechnology Edition, verbose logging
generates a summary of garbage collection at the end of a full garbage collection
cycle. In contrast, the new verbose logging function is event-based, generating data
for each garbage collection operation, as it happens.

A garbage collection cycle is made up of one or more garbage collection
operations, spread across one or more garbage collection increments. A garbage
collection cycle can be caused by a number of events, including:
v Calls to System.gc().
v Allocation failures.
v Completing concurrent collections.
v Decisions based on the cost of making resource allocations.

The verbose garbage collection output for each event contains an incrementing ID
tag. The ID increments for each event, regardless of event type, so you can use this
tag to search within the output for specific events.

By default, -verbose:gc output is written to stderr. You can redirect the
information to a file by using the -Xverbosegclog command-line option, see
Garbage Collection command line options.

Chapter 11. Troubleshooting and support 111

|

|
|
|
|

|
|
|
|

The contents of the -verbose:gc output might change from release to release, when
improvements are made to the technology or when new data becomes available.

New IBM JVMTI extensions are available for subscribing to, and unsubscribing
from, verbose garbage collection logging. For information about using these
extensions, see “IBM JVMTI extensions - API reference” on page 126.

The following sections show sample results for different garbage collection events.

Garbage collection initialization:

When garbage collection is initialized, verbose logging generates output showing
the garbage collection options in force. These items can be modified with options
such as -Xgcthreads.

The first tag shown in the output is the <initialized> tag, which is followed by
values that include an id and timestamp. The information shown in the
<initialized> section includes the garbage collection policy, the policy options,
and any JVM command-line options that are in effect at the time.
<initialized id="1" timestamp="2010-11-23T00:41:32.328">

<attribute name="gcPolicy" value="-Xgcpolicy:gencon" />
<attribute name="maxHeapSize" value="0x5fcf0000" />
<attribute name="initialHeapSize" value="0x400000" />
<attribute name="compressedRefs" value="false" />
<attribute name="pageSize" value="0x1000" />
<attribute name="requestedPageSize" value="0x1000" />
<attribute name="gcthreads" value="2" />
<system>
<attribute name="physicalMemory" value="3214884864" />
<attribute name="numCPUs" value="2" />
<attribute name="architecture" value="x86" />
<attribute name="os" value="Windows XP" />
<attribute name="osVersion" value="5.1" />

</system>
<vmargs>
<vmarg name="-Xoptionsfile=C:\jvmwi3270\jre\bin\default\options.default" />
<vmarg name="-Xlockword:mode=default,noLockword=java/lang/String,noLockword=
java/util/MapEntry,noLockword=java/util/HashMap$Entry,noLockword..." />

<vmarg name="-XXgc:numaCommonThreadClass=java/lang/UNIXProcess$*" />
<vmarg name="-Xjcl:jclscar_26" />
<vmarg name="-Dcom.ibm.oti.vm.bootstrap.library.path=C:\jvmwi3270\jre\bin\
default;C:\jvmwi3270\jre\bin" />

<vmarg name="-Dsun.boot.library.path=C:\jvmwi3270\jre\bin\default;C:\
jvmwi3270\jre\bin" />

<vmarg name="-Djava.library.path=C:\jvmwi3270\jre\bin\default;C:\
jvmwi3270\jre\bin;.;c:\pwi3260\jre\bin;c:\pwi3260\bin;C:\WINDOWS\syst..." />

<vmarg name="-Djava.home=C:\jvmwi3270\jre" />
<vmarg name="-Djava.ext.dirs=C:\jvmwi3270\jre\lib\ext" />
<vmarg name="-Duser.dir=C:\jvmwi3270\jre\bin" />
<vmarg name="_j2se_j9=1119744" value="7FA9CEF8" />
<vmarg name="-Dconsole.encoding=Cp437" />
<vmarg name="-Djava.class.path=." />
<vmarg name="-verbose:gc" />
<vmarg name="-Dsun.java.command=Foo" />
<vmarg name="-Dsun.java.launcher=SUN_STANDARD" />
<vmarg name="_port_library" value="7FA9C5D0" />
<vmarg name="_bfu_java" value="7FA9D9BC" />
<vmarg name="_org.apache.harmony.vmi.portlib" value="000AB078" />

</vmargs>
</initialized>

112 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|
|
|

Stop-the-world operations:

When an application is stopped so that the garbage collector has exclusive access
to the Java virtual machine verbose logging records the event.

<exclusive-start id="3663" timestamp="2015-12-07T14:25:14.704" intervalms="188.956">
<response-info timems="0.131" idlems="0.048" threads="3" lastid="000000000258CE00" lastname="Pooled Thread #2"/>
</exclusive-start>
......
<exclusive-end id="3674" timestamp="2015-12-07T14:25:14.732" durationms="27.513" />

The items in this section of the log are explained as follows:

<exclusive-start> and <exclusive-end>
These tags represent a stop-the-world operation. The tags have the
following attributes:

timestamp
The local timestamp at the start or end of the stop-the-world
operation.

<response-info>
This tag provides details about the process of acquiring exclusive access to
the virtual machine. This tag has the following attributes:

timems The time, in milliseconds, that was taken to acquire exclusive
access to the virtual machine. To obtain exclusive access, the
garbage collection thread requests all other threads to stop
processing, then waits for those threads to respond to the request.
If this time is excessive, you can use the -Xdump:system:events
command-line parameter to create a system dump. The dump file
might help you to identify threads that are slow to respond to the
exclusive access request. For example, the following option creates
a system dump when a thread takes longer than one second to
respond to an internal virtual machine request:
-Xdump:system:events=slow,filter=1000ms

idlems 'Idle time' is the time between one of the threads responding and
the final thread responding. During this time, the first thread is
waiting, or 'idle'. The reported time for idlems is the mean idle
time (in milliseconds) of all threads.

threads
The number of threads that were requested to release VM access.
All threads must respond.

lastid The last thread to respond.

lastname
The name of the thread that is identified by the lastid attribute.

durationms
The total time for which exclusive access was held by the garbage
collection thread.

Garbage collection cycle:

Verbose garbage collection output shows each garbage collection cycle enclosed
within <cycle-start> and <cycle-end> tags. Each garbage collection cycle includes
at least one garbage collection increment.

Chapter 11. Troubleshooting and support 113

The <cycle-end> tag contains a context-id attribute that matches the id of the
corresponding <cycle-start> tag.

<cycle-start id="4" type="scavenge" contextid="0" timestamp="2010-11-23T00:41:32.515" intervalms="225.424" />
<cycle-end id="10" type="scavenge" contextid="4" timestamp="2015-12-07T14:21:11.421" />

In the example, the <cycle-end> tag has a context-id of 4, which reflects the id
value that is shown for <cycle-start>.

The items in this section of the log are explained as follows:

<cycle-start> and <cycle-end>
These tags represent a garbage collection cycle. Each tag has the following
attributes:

type The type of garbage collection. This attribute can have the
following values:

scavenge
Nursery collection is called a Scavenge.

global Mark-sweep garbage collection on the entire heap, with an
optional Compact pass. For more information about global
garbage collection, see: Detailed description of garbage
collection

contextid
The contextid attribute of the <cycle-end> tag matches the id
attribute of the corresponding <cycle-start> tag. In the example,
the value of 4 indicates that this <cycle-end> tag corresponds to
the <cycle-start id="4"> tag.

timestamp
The local timestamp at the time of the start or end of the garbage
collection cycle.

intervalms
The amount of time, in milliseconds, since the start of the last
collection of this type. For the <cycle-start> tag, this value
therefore includes both the duration of the previous garbage
collection cycle, and the interval between the end of the last
collection cycle and the start of this collection cycle.

If you are using the balanced garbage collection policy, you might see the
following line, which precedes the <cycle-start> tag:

<allocation-taxation id="28" taxation-threshold="2621440" timestamp="2014-02-17T16:21:44.325" intervalms="319.068">
</allocation-taxation>

This line indicates that the current garbage collection cycle was triggered due to
meeting an allocation threshold that was set at the end of the previous cycle. The
value of the threshold is reported.

Garbage collection increment:

A complete garbage collection increment is shown within <gc-start> and <gc-end>
tags in the verbose output. Each garbage collection increment includes at least one
garbage collection operation.
<gc-start id="5" type="scavenge" contextid="4" timestamp="2015-12-07T14:21:11.196">
<mem-info id="6" free="3042472" total="3670016" percent="82">
<mem type="nursery" free="0" total="524288" percent="0" />
<mem type="tenure" free="3042472" total="3145728" percent="96">
<mem type="soa" free="2885288" total="2988544" percent="96" />

114 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

<mem type="loa" free="157184" total="157184" percent="100" />
</mem>
<remembered-set count="1852" />

</mem-info>
</gc-start>
...
<gc-op id="7" type="scavenge" timems="3.107" contextid="4" timestamp="2015-12-07T14:21:11.199">
...
<gc-end id="8" type="scavenge" contextid="4" durationms="2.204" timestamp="2015-12-07T14:21:11.421">
<mem-info id="9" free="3115152" total="3670016" percent="84">

<mem type="nursery" free="72680" total="524288" percent="13" />
<mem type="tenure" free="3042472" total="3145728" percent="96">

<mem type="soa" free="2885288" total="2988544" percent="96" />
<mem type="loa" free="157184" total="157184" percent="100" />

</mem>
<pending-finalizers system="1" default="0" reference="0" classloader="0" />
<remembered-set count="1852" />

</mem-info>
</gc-end>

The following details can be found in the log:

<gc-start>
This tag represents the start of a garbage collection increment. This tag has
the following attributes:

type The type of garbage collection. This attribute can have the
following values:

scavenge
Nursery collection is called a Scavenge.

global Mark-sweep garbage collection on the entire heap, with an
optional Compact pass. For more information about global
garbage collection, see: Detailed description of garbage
collection

contextid
The contextid attribute matches the id attribute of the
corresponding garbage collection cycle. In the example, the value
of 4 indicates that this garbage collection increment is part of the
garbage collection cycle that has the tag <cycle-start id="4">.

timestamp
The local time stamp at the start or end of the garbage collection
increment.

The <gc-start> tag encloses a <mem-info> section, which provides
information about the current state of the Java heap.

<gc-end>
This tag represents the end of a garbage collection increment. This tag has
the following attributes:

type The type of garbage collection. This attribute can have the
following values:

scavenge
Nursery collection is called a Scavenge.

global Mark-sweep garbage collection on the entire heap, with an
optional Compact pass. For more information about global
garbage collection, see: Detailed description of garbage
collection

Chapter 11. Troubleshooting and support 115

contextid
The contextid attribute matches the id attribute of the
corresponding garbage collection cycle. In the example, the value
of 4 indicates that this garbage collection increment is part of the
garbage collection cycle that has the tag <cycle-start id="4">.

timestamp
The local time stamp at the start or end of the garbage collection
increment.

usertimems
The total time in CPU seconds that the garbage collection threads
spent in user mode.

systemtimems
The total time in CPU seconds that the garbage collection threads
spent in kernel mode. A high systemtimems value can suggest that
there is a high overhead in work sharing between garbage
collection threads. If this is the case, you can use the -Xgcthreads
option to lower the garbage collection thread count.

activeThreads
The number of active garbage collection threads during this
garbage collection increment. This number might be lower than the
number of garbage collection threads reported when garbage
collection is initialized.

The <gc-end> tag encloses a <mem-info> section, which provides
information about the current state of the Java heap.

<mem-info>
This tag shows the cumulative amount of free space and total space in the
Java heap, calculated by summing the nursery heap size and the tenure
heap size..

If you are using the Generational Concurrent Garbage Collector, the total
value does not account for survivor space in the nursery. You can calculate
the real total heap size by using the following formula:
reported-total-tenure-heap-size + reported-total-nursery-size/tilt-ratio

The tilt ratio is shown in the associated <gc-op> section of the garbage
collection log.

<mem> Within each <mem-info> tag, multiple <mem> tags show the division of
available memory across the various memory areas. Each <mem> tag shows
the amount of free space and total space that is used in that memory area
before and after a garbage collection event. The free space is shown as a
figure and as a rounded-down percentage. The memory area is identified
by the type attribute, which has one of the following values:

nursery
If you are using the Generational Concurrent Garbage Collector,
nursery indicates that this <mem> tag applies to the new area of the
Java heap. For more information about the Generational
Concurrent Garbage Collector, see: Generational Concurrent
Garbage Collector.

tenure Indicates that this <mem> tag applies to the tenure area, where
objects are stored after they reach the tenure age. This memory
type is further divided into soa and loa areas.

116 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

soa Indicates that this <mem> tag applies to the small object area
of the tenure space. This area is used for the first allocation
attempt for an object.

loa Indicates that this <mem> tag applies to the large object area
of the tenure space. This area is used to satisfy allocations
for large objects. For more information, see Large Object
Area.

The <gc-end> tag also contains information about <pending-finalizers>. For more
information and examples, see “Information about finalization” on page 122.
Related information:
Tilt ratio

Garbage collection operation:

Every garbage collection increment contains at least one garbage collection
operation, which is shown in the verbose output with a <gc-op> tag.

The <gc-op> output contains subsections that describe operations that are specific
to the type of garbage collection operation. These subsections might change from
release to release, when improvements are made to the technology or when new
data becomes available.

The following log excerpt shows an example of a garbage collection operation:
<gc-op id="7" type="scavenge" timems="1.127" contextid="4" timestamp="2010-11-23T00:41:32.515">

...

... subsections that are determined by the operation type

...
</gc-op>

The items in this section of the log are explained as follows:

<gc-op>
This tag represents a garbage collection operation, and has the following
attributes:

type The type of garbage collection. The value of this attribute depends
on the stage of the garbage collection cycle and the garbage
collection policy that is in use. The value determines the
subsections that appear within the <gc-op> tag, as described later
in this topic.

Global garbage collection

The following type values can occur during any part of a
global garbage collection cycle, and with the following
garbage collection policies: generational concurrent
(gencon), optimize for throughput (optthruput), and
optimize for pause time (optavgpause).

mark The mark phase of garbage collection. During this
phase, the garbage collector marks all the live
objects. See “Subsections for mark operations” on
page 119.

sweep The sweep phase of garbage collection. During this
phase, the garbage collector identifies the unused
parts of the heap, avoiding the marked objects. See
“Subsections for sweep operations” on page 120.

Chapter 11. Troubleshooting and support 117

compact
The compact phase of garbage collection. During
this phase, the garbage collector moves objects to
create larger, unfragmented areas of free memory.
The garbage collector also changes references to
moved objects to point to the new object location.
Operations of this type might not occur because
compaction is not always required. See
“Subsections for compact operations” on page 120.

classunload
The garbage collector unloads classes and class
loaders that have no live object instances.
Operations of this type might not occur because
class unloading is not always required. See
“Subsections for classunload operations” on page
121.

Final stop-the-world part of a concurrent global garbage
collection

The following type values can occur only in the final
stop-the-world part of a concurrent global garbage
collection cycle, and with the following garbage collection
policies: gencon and optavgpause. These operations occur
before mandatory mark-sweep operations, in the order
shown.

tracing
The garbage collector traces and marks live objects
before the final card-cleaning phase. Operations of
this type occur only if the concurrent phase of the
global garbage collection cycle is abnormally
halted. Normally, tracing and marking is done
concurrently.

rs-scan
The garbage collector traces and marks objects in
the nursery that were found through the
remembered set. The remembered set is a list of
objects in the old (tenured) heap that have
references to objects in the new area.

card-cleaning
The final card-cleaning phase before final
stop-the-world marking. This phase is a normal
step in incremental-update concurrent marking.
This phase compensates for live object mutation
during concurrent tracing and marking.

gencon garbage collection

The following type value applies only to the gencon
garbage collection policy, and occurs during local and
nursery collections.

scavenge
A scavenge operation involves tracing live nursery
objects and moving them to the survivor area. The
operation also includes fixing or adjusting object

118 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

references for the whole heap. See “Subsections for
scavenge operations” on page 121.

timems The time, in milliseconds, taken to complete the garbage collection
operation.

contextid
The contextid attribute matches the id attribute of the
corresponding garbage collection cycle. In the example, the value
of 4 indicates that this garbage collection increment is part of the
garbage collection cycle that has the tag <cycle-start id="4">.

timestamp
The local time stamp at the time of the garbage collection
operation.

The following information describes the subsections of the <gc-op> tag, which vary
depending on the value of the <gc-op> type attribute.

Subsections for mark operations

The following log excerpt shows an example of a mark operation:
<gc-op id="9016" type="mark" timems="14.563" contextid="9013" timestamp="2015-09-28T14:47:49.927">
<trace-info objectcount="1896901" scancount="1307167" scanbytes="34973672" />
<finalization candidates="1074" enqueued="1" />
<references type="soft" candidates="16960" cleared="10" enqueued="6" dynamicThreshold="12" maxThreshold="32" />
<references type="weak" candidates="6514" cleared="1" enqueued="1" />
<references type="phantom" candidates="92" cleared="0" enqueued="0" />
<stringconstants candidates="18027" cleared="1" />

</gc-op>

The subsections within the <gc-op> tag are explained as follows:

<trace-info>
Contains general information about the objects traced. This tag has the
following attributes:

objectcount
The number of objects discovered during the stop-the-world (STW)
phase of marking.

scancount
The number of objects that are non-leaf objects: that is, they have
at least one reference slot.

scanbytes
The total size in bytes of all scannable objects. (This is less than the
total size of all live objects, the "live set.")

<finalization>
<references>

For information about the <finalization> and <references> elements, see
“Information about finalization” on page 122 and “Information about
reference processing” on page 123.

<stringconstants>
Contains general information about the objects traced. This tag has the
following attributes:

candidates
The total number of string constants.

Chapter 11. Troubleshooting and support 119

cleared
The number of string constants removed during this garbage
collection cycle. (The number of string constants added since the
previous global garbage collection is not explicitly reported.)

Subsections for sweep operations

The following log excerpt shows an example of a sweep operation:
<gc-op id="8979" type="sweep" timems="1.468" contextid="8974" timestamp="2015-09-28T14:47:49.141" />

There are no subsections within the <gc-op> tag.

Subsections for compact operations

The following log excerpt shows an example of a compact operation:
<gc-op id="8981" type="compact" timems="43.088" contextid="8974" timestamp="2015-09-28T14:47:49.184">
<compact-info movecount="248853" movebytes="10614296" reason="compact on aggressive collection" />

</gc-op>

There is one subsection within the <gc-op> tag:

<compact-info>
This tag has the following attributes:

movecount
The number of objects moved.

movebytes
The size of the objects moved in bytes.

reason The reason for the compact operation:

compact to meet allocation
Unable to satisfy allocation even after mark-sweep.

compact on aggressive collection
Aggressive garbage collection is a global garbage collection
that involves extra steps and gc-op operations to free as
much memory as possible. One of those operations is
compaction. Aggressive garbage collection might be
triggered after a normal (non-agressive) Global garbage
collection was unable to satisfy the allocate operation. Note
that alternate Explicit garbage collections (for example,
those invoked with System.gc()) are aggressive.

heap fragmented
Compaction to reduce fragmentation, as measured by
internal metrics. There are a number of reasons to reduce
fragmentation such as to prevent premature allocation
failures with large objects, increase locality of objects and
references, lower contention in allocation, or reduce
frequency of Global garbage collections.

forced gc with compaction
A Global garbage collection that included a compact
operation was explicitly requested, typically by using an
agent or RAS tool, before a heap dump, for example.

low free space
An indication that free memory is less than 4%.

120 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

very low free space
An indication that free memory is less than 128 kB.

forced compaction
Compaction was explicitly requested with one of the JVM
options such as -Xcompactgc.

compact to aid heap contraction
Objects were moved in the heap from high to low address
ranges to create contiguous free space and thus aid heap
contraction.

Subsections for classunload operations

The garbage collector unloads classes and class loaders that have no live object
instances. Operations of this type might not occur because class unloading is not
always required. The following log excerpt shows an example of a classunload
operation:

<gc-op id="8978" type="classunload" timems="1.452" contextid="8974" timestamp="2015-09-28T14:47:49.140">
<classunload-info classloadercandidates="1147" classloadersunloaded="3" classesunloaded="5"

anonymousclassesunloaded="0" quiescems="0.000" setupms="1.408" scanms="0.041" postms="0.003" />
</gc-op>

There is one subsection within the <gc-op> tag:

<classunload-info>
This tag has the following attributes:

classloadercandidates
The total number of class loaders.

classloadersunloaded
The number of class loaders unloaded in this garbage collection
cycle.

classesunloaded
The number of classes unloaded.

anonymousclassesunloaded
The number of anonymous classes unloaded. (Anonymous classes
are unloaded individually and are reported separately.)

quiescems
setupms
scanms
postms The total time (in milliseconds) is broken down into four substeps.

Subsections for scavenge operations

Scavenge operations occur only with the gencon garbage collection policy. A
scavenge operation runs when the allocate space within the nursery area is filled.
During a scavenge, reachable objects are copied either into the survivor space
within the nursery, or into the tenure space if they have reached the tenure age.

The following log excerpt shows an example of a scavenge operation:
<gc-op id="9029" type="scavenge" timems="2.723" contextid="9026" timestamp="2015-09-28T14:47:49.998">
<scavenger-info tenureage="3" tenuremask="ffb8" tiltratio="89" />
<memory-copied type="nursery" objects="11738" bytes="728224" bytesdiscarded="291776" />
<memory-copied type="tenure" objects="6043" bytes="417920" bytesdiscarded="969872" />

Chapter 11. Troubleshooting and support 121

<finalization candidates="266" enqueued="0" />
<references type="soft" candidates="94" cleared="0" enqueued="0" dynamicThreshold="12" maxThreshold="32" />
<references type="weak" candidates="317" cleared="25" enqueued="17" />

</gc-op>

The subsections within the <gc-op> tag are explained as follows:

<scavenger-info>
Contains general information about the operation. This tag has the
following attributes:

tenureage
The current age at which objects are promoted to the tenure area.

tenuremask

tiltratio
The tilt ratio (a percentage) after the last scavenge event and space
adjustment. The scavenger redistributes memory between the
allocate and survivor areas by using a process called "tilting".
Tilting controls the relative sizes of the allocate and survivor
spaces, and the tilt ratio is adjusted to maximize the amount of
time between scavenges. A tilt ratio of 60% indicates that 60% of
new space is reserved for allocate space and 40% for survivor
space.

<memory-copied>
Indicates the quantity of object data that is flipped to the nursery area or
promoted to the tenure area. This tag has the following attributes:

type One of the values nursery or tenure.

objects
The number of objects flipped to the nursery area or promoted to
the tenure area.

bytes The number of bytes flipped to the nursery area or promoted to
the tenure area.

bytesdiscarded
The number of bytes consumed in the nursery or tenure area but
not successfully used for flipping or promotion. For each area, the
total amount of consumed memory is the sum of the values of
bytes and bytesdiscarded.

<finalization>
<references>

For information about the <finalization> and <references> elements, see
“Information about finalization” and “Information about reference
processing” on page 123.

Information about finalization:

The <finalization> section of the log records the number of enqueued finalizable
objects that are in the current GC operation. The <pending-finalizers> section,
which is found in the <gc-end> tag, records the current pending state. The current
pending state is the sum of the enqueued finalizable objects from the current GC
operation, plus all the objects from the past that are not yet finalized.

The following log excerpt shows an example of a <finalization> entry in the log:
<finalization candidates="1088" enqueued="10">

122 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

<finalization>
This tag shows the number of objects that contain finalizers and were
queued for virtual machine finalization during the collection. This number
is not equal to the number of finalizers that were run during the collection
because finalizers are scheduled by the virtual machine. This tag has the
following attributes:

candidates
Indicates the number of finalizable objects that were found in the
GC cycle. The number includes live finalizable objects and those
finalizable objects that are no longer alive since the last GC cycle.
Only those objects that are no longer alive are enqueued for
finalization.

enqueued
Indicates the fraction of candidates that are eligible for finalization.

The following log excerpt shows an example of a <pending-finalizers> entry in
the log, which is recorded only in the gc-end section.
<pending-finalizers system="3" default="7" reference="40" classloader="0" />

<pending-finalizers>
Indicates the current state of queues of finalizable objects.

system Indicates the number of enqueued system objects.

default
Indicates the number of enqueued default objects. At the end of the
GC cycle, the sum of system objects and default objects is larger
than or equal to the fraction of candidates that are eligible for
finalization from the same GC cycle.

reference
Indicates the number of enqueued references. That is, the number
of references that were cleared and have a reference queue that is
associated with them since the previous GC cycle. Typically, the
number of pending references is larger or equal to the sum of
enqueued weak, soft, and phantom references reported in the
gc-op stanza of the same cycle.

classloader
Indicates the number of class loaders that are eligible for
asynchronous unloading.

If the number of pending finalizers is larger than the number of candidates
that are created by the current GC cycle, finalization cannot keep up with
the influx. This situation might indicate suboptimal behavior. You can
work out the number of outstanding pending finalizer objects at the
beginning of a GC cycle by using the following calculation:

number of outstanding pending finalizer objects at the beginning =
number of pending finalizer objects at the end - candidates created in this cycle

Information about reference processing:

The <references> section in the verbose Garbage Collection (GC) logs contains
information about reference processing.

The following log excerpt shows an example of a <references> entry in the log:
<references type="soft" candidates="16778" cleared="21" enqueued="14" dynamicThreshold="10" maxThreshold="32" />
<references type="weak" candidates="5916" cleared="33" enqueued="26" />

Chapter 11. Troubleshooting and support 123

<references>
This tag provides information about Java reference objects, and has the
following attributes:

type Indicates the type of the reference object. The type affects how the
reference object is processed during garbage collection. The type
attribute can have the following values:

soft Indicates that this object is an instance of the SoftReference
class. Soft references are processed first during garbage
collection.

weak Indicates that this object is an instance of the
WeakReference class. Weak references are processed after
soft references during garbage collection.

phantom
Indicates that this object is an instance of the
PhantomReference class. Phantom references are processed
after weak references during garbage collection.

candidates
Indicates the number of reference objects that were found in the
GC cycle. The number includes reference objects whose referents
are strong, soft, weak, or phantom reachable.

cleared
Indicates the number of reference objects that have a soft, weak, or
phantom reachable referent, and that are cleared in this GC cycle.

enqueued
Indicates the fraction of cleared reference objects that are eligible
for enqueuing. Eligible objects are cleared references objects that
have a ReferenceQueue associated with them at reference creation
time. The reference enqueuing is done by the finalization thread.
For more information about the finalization section of the log, see
“Information about finalization” on page 122.

dynamicThreshold
Applicable only to soft reference types. Indicates a dynamic value
for the number of GC cycles (including local or global GC cycles)
that a soft reference object can survive before it is cleared. The
dynamic number is generated by internal heuristics that can reduce
the threshold. For example, high heap occupancy might reduce the
threshold from the maximum value.

maxThreshold
Applicable only to soft reference types. This value shows the
maximum number of GC cycles (including local or global) that a
soft reference object can survive before it is cleared.

Allocation failure:

Garbage collection cycles caused by an allocation failure are shown by <af-start>
and <af-end> tags in the verbose output.

The <af-start> and <af-end> tags enclose the <cycle-start> and <cycle-end>
tags. The <af-start> tag contains a totalBytesRequested attribute. This attribute
specifies the number of bytes that were required by the allocations that caused this
allocation failure. The intervalms attribute on the af-start tag is the time, in
milliseconds, since the previous <af-start> tag. When the garbage collection cycle

124 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

caused by the allocation failure is complete, an allocation-satisfied tag is
generated. This tag indicates that the allocation that caused the failure is now
complete.

The following example shows two cycles within an af-start/af-end pair. Typically
there is only one cycle, but in this example, Scavenge is not able to release enough
memory in either Nursery or Tenure to meet the value of totalBytesRequested.
This failure triggers global garbage collection, after which the allocation request is
fulfilled.

<af-start id="2540" totalBytesRequested="8011256" timestamp="2015-12-07T14:00:34.657" intervalms="393.258" />
<cycle-start id="2541" type="scavenge" contextid="0" timestamp="2015-12-07T14:00:34.657" intervalms="393.269" />
...
<gc-end id="2545" type="scavenge" contextid="2541" durationms="5.163" usertimems="25.996" systemtimems="3.999" timestamp="2015-12-07T14:00:34.662" activeThreads="24">
<mem-info id="2546" free="9330208" total="111149056" percent="8">
<mem type="nursery" free="1484208" total="27787264" percent="5">

...
<cycle-end id="2547" type="scavenge" contextid="2541" timestamp="2015-12-07T14:00:34.662" />
<cycle-start id="2548" type="global" contextid="0" timestamp="2015-12-07T14:00:34.662" intervalms="7196.493" />
...
<cycle-end id="2556" type="global" contextid="2548" timestamp="2015-12-07T14:00:34.668" />
<allocation-satisfied id="2557" threadId="00000000022BCF00" bytesRequested="8011256" />
<af-end id="2558" timestamp="2015-12-07T14:00:34.671" />

The items in this section of the log are explained as follows:

<af-start> and <af-end>
This tag is generated when an allocation failure occurs, and contains a
garbage collection cycle, indicated by the <cycle-start> and <cycle-end>
tags. This tag has the following attributes:

totalBytesRequested
The number of bytes that were required by the allocations that
caused this allocation failure.

timestamp
The local timestamp at the time of the allocation failure.

intervalms
The time, in milliseconds, since the previous <af-start> tag was
generated.

<allocation-satisfied>
This tag indicates that the allocation that caused the failure is complete.
This tag is generated when the garbage collection cycle that was caused by
the allocation failure is complete. This tag has the following attributes:

thread The Java thread identifier that triggers garbage collection.

bytesRequested
This attribute is identical to the totalBytesRequested attribute that
is seen in the <af-start> tag.

Tracing problems with Balanced garbage collection
You can trace problems with garbage collection using the -Xtgc options. Some of
these options are changed when using the Balanced Garbage Collection policy.

The following -Xtgc options are no longer accepted when used with
-Xgcpolicy:balanced:
v concurrent

v references

v scavenger

In all cases, the JVM fails to start.

The following -Xtgc options can be used with -Xgcpolicy:balanced:

Chapter 11. Troubleshooting and support 125

v backtrace

v compaction

v dump

v freeList

v parallel

v terse

For further information about the -Xtgc options, see Tracing garbage collection
operations.

Using the JVMTI
The Java Virtual Machine Tool Interface (JVMTI) is a two-way interface that allows
a native agent to analyze a Java virtual machine (JVM).

The JVMTI is a standard interface from Oracle that allows third parties to develop
debugging, profiling, and monitoring tools for a JVM. The interface allows an
agent to request information or to trigger a function within a JVM, and to receive
notifications. Several agents can be attached to a JVM at any one time. For more
information about using JVMTI, see the Java 6 Diagnostics Guide,
http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/
com.ibm.java.doc.diagnostics.60/diag/tools/jvmti.html.

IBM JVMTI extensions
The IBM SDK provides extensions to JVMTI that enhance the diagnostic
capabilities of this interface. New extensions are available.

New IBM JVMTI extensions are available for the following tasks:
v Modifying the logging configuration of the JVM.
v Querying native memory usage.
v Finding and removing shared class caches.
v Subscribing to, and unsubscribing from, verbose garbage collection logging.

IBM JVMTI extensions - API reference:

Reference information for the IBM SDK extensions to the JVMTI.

Use the information in this section to query or control J9 VM functions by using
the JVMTI interface.

Reference material for IBM JVMTI extensions that are included with the IBM SDK,
Java Technology Edition, Version 6 can be found here: ../../../../
com.ibm.java.doc.diagnostics.60/diag/tools/jvmti_extensions_ref.html.

Querying runtime environment native memory categories:

You can query the total native memory consumption of the runtime environment
for each memory category using the GetMemoryCategories() API.

The GetMemoryCategories() API has the JVMTI Extension Function identifier
com.ibm.GetMemoryCategories. The identifier is declared as macro
COM_IBM_GET_MEMORY_CATEGORIES in ibmjvmti.h.

Native memory is memory requested from the operating system using library
functions such as malloc() and mmap(). Runtime environment native memory use

126 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|

http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.doc.diagnostics.60/diag/tools/jvmti.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.doc.diagnostics.60/diag/tools/jvmti.html

is grouped under high-level memory categories, as described in the Javadump
section “Native memory (NATIVEMEMINFO)” on page 72. The data returned by
the GetMemoryCategories() API is consistent with this format.
jvmtiError GetMemoryCategories(jvmtiEnv* env, jint version, jint max_categories,
jvmtiMemoryCategory * categories_buffer, jint * written_count_ptr, jint *
total_categories_ptr);

The extension writes native memory information to a memory buffer specified by
the user. Each memory category is recorded as a jvmtiMemoryCategory structure,
whose format is defined in ibmjvmti.h.

You can use the GetMemoryCategories() API to work out the buffer size you must
allocate to hold all memory categories defined inside the JVM. To calculate the
size, call the API with a NULL categories_buffer argument and a non-NULL
total_categories_ptr argument.

Parameters:
env: A pointer to the JVMTI environment.

version: The version of the jvmtiMemoryCategory structure that you are
using. Use COM_IBM_GET_MEMORY_CATEGORIES_VERSION_1 for this
argument, unless you must work with an obsolete version of the
jvmtiMemoryCategory structure.

max_categories: The number of jvmtiMemoryCategory structures that can
fit in categories_buffer.

categories_buffer: A pointer to the memory buffer for holding the result
of the GetMemoryCategories() call. The number of jvmtiMemoryCategory
slots available in categories_buffer must be accurately specified with
max_categories, otherwise GetMemoryCategories() can overflow the
memory buffer. The value can be NULL.

written_count_ptr: A pointer to jint to store the number of
jvmtiMemoryCategory structures to be written to categories_buffer. The
value can be NULL.

total_categories_ptr: A pointer to jint to store the total number of
memory categories declared in the JVM. The value can be NULL.

Returns:
JVMTI_ERROR_NONE: Success.

JVMTI_ERROR_UNSUPPORTED_VERSION: Unrecognized value passed for version.

JVMTI_ERROR_ILLEGAL_ARGUMENT: Illegal argument; categories_buffer,
count_ptr and total_categories_ptr all have NULL values.

JVMTI_ERROR_INVALID_ENVIRONMENT: The env parameter is invalid.

JVMTI_ERROR_OUT_OF_MEMORY: Memory category data is truncated because
max_categories is not large enough.

Querying JVM log options:

You can query the JVM log options that are set using the QueryVmLogOptions()
API.

The QueryVmLogOptions() API has the JVMTI Extension Function identifier
com.ibm.QueryVmLogOptions. The identifier is declared as macro
COM_IBM_QUERY_VM_LOG_OPTIONS in ibmjvmti.h.

Chapter 11. Troubleshooting and support 127

To query the current JVM log options, use:
jvmtiError QueryVmLogOptions(jvmtiEnv* jvmti_env, jint buffer_size, \
void* options, jint* data_size_ptr)

This extension returns the current log options as an ASCII string. The syntax of the
string is the same as the -Xlog command-line option, with the initial -Xlog:
omitted. For example, the string "error,warn" indicates that the JVM is set to log
error and warning messages only. For more information about using the -Xlog
option, see “-Xlog” on page 145. If the memory buffer is too small to contain the
current JVM log option string, you can expect the following results:
v The error message JVMTI_ERROR_ILLEGAL_ARGUMENT is returned.
v The variable for data_size_ptr is set to the required buffer size.

Parameters:
jvmti_env: A pointer to the JVMTI environment.

buffer_size: The size of the supplied memory buffer in bytes.

options_buffer: A pointer to the supplied memory buffer.

data_size_ptr: A pointer to a variable, used to return the total size of the
option string.

Returns:
JVMTI_ERROR_NONE: Success

JVMTI_ERROR_NULL_POINTER: The options or data_size_ptr parameters are
null.

JVMTI_ERROR_INVALID_ENVIRONMENT: The jvmti_env parameter is invalid.

JVMTI_ERROR_WRONG_PHASE: The extension has been called outside the JVMTI
live phase.

JVMTI_ERROR_ILLEGAL_ARGUMENT: The supplied memory buffer is too small.

Setting JVM log options:

You can set the log options for a JVM using the same syntax as the -Xlog
command-line option.

The SetVmLogOptions() API has the JVMTI Extension Function identifier
com.ibm.SetVmLogOptions. The identifier is declared as macro
COM_IBM_SET_VM_LOG_OPTIONS in ibmjvmti.h.

To set the JVM log options use:
jvmtiError SetVmLogOptions(jvmtiEnv* jvmti_env, char* options_buffer)

The log option is passed in as an ASCII character string. Use the same syntax as
the -Xlog command-line option, with the initial -Xlog: omitted. For example, to set
the JVM to log error and warning messages, pass in a string containing
"error,warn". For more information about using the -Xlog option, see “-Xlog” on
page 145.

Parameters:
jvmti_env: A pointer to the JVMTI environment.

options_buffer: A pointer to memory containing the log option.

Returns:
JVMTI_ERROR_NONE: Success.

128 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

JVMTI_ERROR_NULL_POINTER: The parameter option is null.

JVMTI_ERROR_OUT_OF_MEMORY: There is insufficient system memory to
process the request.

JVMTI_ERROR_INVALID_ENVIRONMENT: The jvmti_env parameter is invalid.

JVMTI_ERROR_WRONG_PHASE: The extension has been called outside the JVMTI
live phase.

JVMTI_ERROR_ILLEGAL_ARGUMENT: The parameter option contains an invalid
-Xlog string.

Finding shared class caches:

You can search for caches by using the IterateSharedCaches() API.

IterateSharedCaches()

The IterateSharedCaches() API has the JVMTI Extension Function identifier
com.ibm.IterateSharedCaches. The identifier is declared as macro
COM_IBM_ITERATE_SHARED_CACHES in ibmjvmti.h.

To search for shared class caches that exist in a specified cache directory, use:
jvmtiError IterateSharedCaches(jvmtiEnv* env, jint version, const char *cacheDir,
jint flags, jboolean useCommandLineValues, jvmtiIterateSharedCachesCallback
callback, void *user_data);

This extension searches for shared class caches in a specified directory. Information
about the caches is returned in a structure that is populated by a user specified
callback function. You can specify the search directory by either:
v Setting the value of useCommandLineValues to true and specifying the directory

on the command line. If you do not specify a directory on the command line,
the default platform location is used.

v Setting the value of useCommandLineValues to false and using the cacheDir
parameter. To accept the default platform location, specify cacheDir with a
NULL value.

Parameters:
env: A pointer to the JVMTI environment.

version: Version information for IterateSharedCaches, which describes the
jvmtiSharedCacheInfo structure passed to the
jvmtiIterateSharedCachesCallback function. The only value permitted is
COM_IBM_ITERATE_SHARED_CACHES_VERSION_1.

cacheDir: When the value of useCommandLineValues is false, specify the
absolute path of the directory for the shared class cache. If the value is
null, the platform-dependent default is used.

flags: Reserved for future use. The only value permitted is
COM_IBM_ITERATE_SHARED_CACHES_NO_FLAGS.

useCommandLineValues: Set this value to true when you want to specify the
cache directory on the command line. Set this value to false when you
want to use the cacheDir parameter.

callback: A function pointer to a user provided callback routine
jvmtiIterateSharedCachesCallback.

Chapter 11. Troubleshooting and support 129

user_data: User supplied data, passed as an argument to the callback
function.

jint (JNICALL *jvmtiIterateSharedCachesCallback)(jvmtiEnv *env,jvmtiSharedCacheInfo
*cache_info, void *user_data);

Returns:
JVMTI_ERROR_NONE: Success.

JVMTI_ERROR_OUT_OF_MEMORY: There is insufficient system memory to
process the request.

JVMTI_ERROR_INVALID_ENVIRONMENT: The env parameter is not valid.

JVMTI_ERROR_WRONG_PHASE: The extension has been called outside the JVMTI
live phase.

JVMTI_ERROR_UNSUPPORTED_VERSION: The version parameter is not valid.

JVMTI_ERROR_NULL_POINTER: The callback parameter is NULL.

JVMTI_ERROR_NOT_AVAILABLE: The shared classes feature is not enabled in
the JVM.

JVMTI_ERROR_ILLEGAL_ARGUMENT: The flags parameter is not valid.

JVMTI_ERROR_INTERNAL: This error is returned when the
jvmtiIterateSharedCachesCallback returns JNI_ERR.

jvmtiIterateSharedCachesCallback function

The jvmtiIterateSharedCachesCallback function is called with the following
parameters:

Parameters:
env: A pointer to the JVMTI environment when calling
COM_IBM_ITERATE_SHARED_CACHES.

cache_info: A jvmtiSharedCacheInfo structure containing information
about a shared cache.

user_data: User supplied data, passed as an argument to
IterateSharedCaches.

The following values are returned by the jvmtiIterateSharedCachesCallback
function.

Returns:
JNI_OK: Continue iterating.

JNI_ERR: Stop iterating, which causes IterateSharedCaches to return
JVMTI_ERROR_INTERNAL

jvmtiSharedCacheInfo structure

The structure of jvmtiSharedCacheInfo:
typedef struct jvmtiSharedCacheInfo {
const char *name; - the name of the shared cache
jboolean isCompatible; - if the shared cache is compatible with this JVM
jboolean isPersistent; - true if the shared cache is persistent, false if its non-

persistent
jint os_shmid; - the OS shared memory ID associated with a non-persistent cache,

-1 otherwise
jint os_semid; - the OS shared semaphore ID associated with a non-persistent cache,

-1 otherwise

130 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

jint modLevel; - one of COM_IBM_SHARED_CACHE_MODLEVEL_JAVA5,
COM_IBM_SHARED_CACHE_MODLEVEL_JAVA6,
COM_IBM_SHARED_CACHE_MODLEVEL_JAVA7

jint addrMode; - one of COM_IBM_SHARED_CACHE_ADDRMODE_32,
COM_IBM_SHARED_CACHE_ADDRMODE_64

jboolean isCorrupt; - if the cache is corrupted
jlong cacheSize; - the total usable shared class cache size, or -1 when

isCompatible is false
jlong freeBytes; - the amount of free bytes in the shared class cache, or -1 when

isCompatible is false
jlong lastDetach; - the last detach tiime specified in milliseconds since

00:00:00 on January 1, 1970 UTC.
} jvmtiSharedCacheInfo;

For information about the equivalent Java APIs, see “Utility APIs” on page 105.

Removing a shared class cache:

You can remove a shared class cache using the DestroySharedCache() API.

The DestroySharedCache() API has the JVMTI Extension Function identifier
com.ibm.DestroySharedCache. The identifier is declared as macro
COM_IBM_DESTROY_SHARED_CACHE in ibmjvmti.h.

To remove a shared cache, use:
jvmtiError DestroySharedCache(jvmtiEnv *env, const char *cacheDir, const char *name,
jint persistence, jboolean useCommandLineValues, jint *internalErrorCode);

This extension removes a named shared class cache of a given persistence type, in
a given directory. You can specify the cache name, persistence type, and directory
by either:
v Setting useCommandLineValues to true and specifying the values on the

command line. If a value is not available, the default values for the platform are
used.

v Setting useCommandLineValues to false and using the cacheDir, persistence and
cacheName parameters to identify the cache to be removed. To accept the default
value for cacheDir or cacheName, specify the parameter with a NULL value.

Parameters:
env: A pointer to the JVMTI environment.

cacheDir: When the value of useCommandLineValues is false, specify the
absolute path of the directory for the shared class cache. If the value is
NULL, the platform-dependent default is used.

cacheName: When the value of useCommandLineValues is false, specify the
name of the cache to be removed. If the value is NULL, the
platform-dependent default is used.

persistence: When the value of useCommandLineValues is false, specify the
type of cache to remove. This parameter must have one of the following
values:
v PERSISTENCE_DEFAULT: The default value for the platform.
v PERSISTENT.
v NONPERSISTENT.

useCommandLineValues: Set this value to true when you want to specify the
shared class cache name, persistence type, and directory on the command

Chapter 11. Troubleshooting and support 131

line. Set this value to false when you want to use the cacheDir,
persistence and cacheName parameters instead.

internalErrorCode: If not NULL, this value is set to one of the following
constants when JVMTI_ERROR_INTERNAL is returned.
v COM_IBM_DESTROYED_NONE: Set when the function fails to remove

any caches.
v COM_IBM_DESTROY_FAILED_CURRENT_GEN_CACHE: Set when the

function fails to remove the existing current generation cache,
irrespective of the state of older generation caches.

v COM_IBM_DESTROY_FAILED_OLDER_GEN_CACHE: Set when the
function fails to remove any older generation caches. The current
generation cache does not exist or is successfully removed

This value is set to COM_IBM_DESTROYED_ALL_CACHE when
JVMTI_ERROR_NONE is returned.

Returns:
JVMTI_ERROR_NONE: Success. No cache exists or all existing caches of all
generations are removed.

JVMTI_ERROR_OUT_OF_MEMORY: There is insufficient system memory to
process the request.

JVMTI_ERROR_INVALID_ENVIRONMENT: The env parameter is not valid.

JVMTI_ERROR_WRONG_PHASE: The extension has been called outside the JVMTI
live phase.

JVMTI_ERROR_NOT_AVAILABLE: The shared classes feature is not enabled in
the JVM.

JVMTI_ERROR_ILLEGAL_ARGUMENT: The persistence parameter is not valid.

JVMTI_ERROR_INTERNAL: Failed to remove any existing cache with the given
name. See the value of internalErrorCode for more information about the
failure.

For information about the equivalent Java APIs, see “Utility APIs” on page 105.

Subscribing to verbose garbage collection logging:

You can subscribe to verbose Garbage Collection (GC) data logging through an
IBM JVMTI extension.

The RegisterVerboseGCSubscriber() API has the JVMTI Extension function
identifier com.ibm.RegisterVerboseGCSubscriber. The identifier is declared as
macro COM_IBM_REGISTER_VERBOSEGC_SUBSCRIBER in ibmjvmti.h.

To register a subscription to verbose GC data logging, use:
jvmtiError RegisterVerboseGCSubscriber(jvmtiEnv* jvmti_env, char *description,
jvmtiVerboseGCSubscriber subscriber, jvmtiVerboseGCAlarm alarm, void

An ASCII character string describing the subscriber must be passed in.

An arbitrary pointer to user data must be supplied. This pointer is passed to the
subscriber and alarm functions each time these functions are called. This pointer
can be NULL.

132 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|

|

|
|

|
|
|

|

|
|

|

|
|
|

A pointer to a subscription ID must be supplied. This pointer is returned by the
RegisterVerboseGCSubscriber call if successful. The value must be supplied to a
future call to DeregisterVerboseGCSubscriber.

Parameters:
jvmti_env: A pointer to the JVMTI environment.

description: A string that describes your subscriber.

subscriber: A function of type jvmtiVerboseGCSubscriber.

alarm: A function pointer of type jvmtiVerboseGCAlarm.

user_data: User data that is passed to the subscriber function.

subscription_id: A pointer to a subscription identifier that is returned.

Returns:
JVMTI_ERROR_NONE: Success.

JVMTI_ERROR_NULL_POINTER: One of the supplied parameters is null.

JVMTI_ERROR_OUT_OF_MEMORY: There is insufficient system memory to
process the request.

JVMTI_ERROR_INVALID_ENVIRONMENT: The jvmti_env parameter is not valid.

JVMTI_ERROR_WRONG_PHASE: The extension has been called outside the JVMTI
live phase.

JVMTI_ERROR_NOT_AVAILABLE: GC verbose logging is not available.

JVMTI_ERROR_INTERNAL: An internal error has occurred.

The subscriber function type

The jvmtiVerboseGCSubscriber function is called with the following parameters:
typedef jvmtiError (*jvmtiVerboseGCSubscriber)(jvmtiEnv *jvmti_env, const char
*record, jlong length, void *user_data);

The subscriber function must be of type jvmtiVerboseGCSubscriber, which is
declared in ibmjvmti.h. This function is called with each record of verbose logging
data produced by the JVM. The verbose logging record supplied to the subscriber
function is valid only for the duration of the function. If the subscriber wants to
save the data, the data must be copied elsewhere. If the subscriber function returns
an error, the alarm function is called, and the subscription is de-registered.

Alarm function parameters:
jvmti_env: A pointer to the JVMTI environment.

record: An ascii string that contains a verbose log record.

length: The number of ascii characters in the verbose log record.

user_data: User data supplied when the subscriber is registered.

The alarm function type

The jvmtiVerboseGCAlarm function is called with the following parameters:
typedef jvmtiError (*jvmtiVerboseGCAlarm)(jvmtiEnv *jvmti_env, void
*subscription_id, void *user_data);

The alarm function must be of type jvmtiVerboseGCAlarm, which is declared in
ibmjvmti.h. This function is called if the subscriber function returns an error.

Chapter 11. Troubleshooting and support 133

|
|
|

|
|

|

|

|

|

|

|
|

|

|
|

|

|
|

|

|

|

|

|
|

|
|
|
|
|
|

|
|

|

|

|

|

|

|
|

|
|

Alarm function parameters:
jvmti_env: A pointer to the JVMTI environment.

user_data: User data supplied when the subscriber is registered.

subscription_id: The subscription identifier.

Unsubscribing from verbose garbage collection logging:

You can unsubscribe from verbose Garbage Collection (GC) data logging through
an IBM JVMTI extension.

The DeregisterVerboseGCSubscriber() API has the JVMTI Extension Function
identifier com.ibm.DeregisterVerboseGCSubscriber. The identifier is declared as
macro COM_IBM_DEREGISTER_VERBOSEGC_SUBSCRIBER in ibmjvmti.h.

To unsubscribe from verbose GC data logging, use:
jvmtiError DeregisterVerboseGCSubscriber(jvmtiEnv* jvmti_env, void *userData,
void *subscription_id)

You must supply the subscription ID returned by the call to
RegisterVerboseGCSubscriber. The previously registered subscriber function is no
longer called with future verbose logging records.

Parameters:
jvmti_env: A pointer to the JVMTI environment.

subscription_id: The subscription identifier.

Returns:
JVMTI_ERROR_NONE: Success.

JVMTI_ERROR_NULL_POINTER: The subscription_id parameter is null.

JVMTI_ERROR_OUT_OF_MEMORY: There is insufficient system memory to
process the request.

JVMTI_ERROR_INVALID_ENVIRONMENT: The jvmti_env parameter is not valid.

JVMTI_ERROR_WRONG_PHASE: The extension has been called outside the JVMTI
live phase.

Using the DTFJ interface
The Diagnostic Tool Framework for Java (DTFJ) interface has been updated. You
can now write applications that obtain information about native memory from a
system dump or javadump.

To create applications that use DTFJ, you must use the DTFJ interface. The DTFJ
API has been enhanced to enable you to obtain information about native memory.
Native memory is memory requested from the operating system using library
functions such as malloc() and mmap(). When the runtime environment allocates
native memory, the memory is associated with a high-level memory category. Each
memory category has two running counters:
v The total number of bytes allocated but not yet freed.
v The number of native memory allocations that have not been freed.

Each memory category can have subcategories.

The following diagram illustrates the DTFJ interface:

134 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|
|

|

|

|

|
|

|
|
|

|

|
|

|
|
|

|
|

|

|
|

|

|
|

|

|
|

<<Java Class>>

MemoryAccessException

<<Java Class>>

DataUnavailable

<<Java Class>>

DTFJException

<<Java Class>>

CorruptDataException

<<Java Interface>>

ImageFactory

ImagePointer

<<Java Interface>>

<<Java Interface>>

ImageSymbol

<<Java Interface>>

ImageModule

<<Java Interface>>

ImageProcess

<<Java Interface>>

ImageThread

<<Java Interface>>
JavaThread

<<Java Interface>>

ImageRegister

<<Java Interface>>

ImageStackFrame

<<Java Interface>>

JavaStackFrame

<<Java Interface>>

JavaLocation

<<Java Interface>>

JavaVMOption

<<Java Interface>>

JavaVMInitArgs

<<Java Interface>>

JavaMonitor

<<Java Interface>>

JavaObject

<<Java Interface>>

JavaMethod

<<Java Interface>>

JavaField

<<Java Interface>>

ManagedRuntime

<<Java Interface>>

JavaRuntime

<<Java Interface>>

JavaReference

<<Java Interface>>

JavaClass

<<Java Interface>>

JavaHeap

<<Java Interface>>

JavaMember

<<Java Interface>>

JavaClassLoader

<<Java Interface>>

JavaRuntimeMemorySection

<<Java Interface>>

JavaRuntimeMemoryCategory

<<Java Interface>>

ImageSection

<<Java Interface>>

ImageAddressSpace

Image

<<Java Interface>><<Java Interface>>

CorruptData

<<JavaPackage>>

com.ibm.dtfj.image

<<JavaPackage>>

com.ibm.dtfj.runtime

<<JavaPackage>>

com.ibm.dtfj.java

<<use>>

<<use>>

<<use>>

<<use>><<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>><<use>>

<<use>> <<use>> <<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>><<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

For more information about using the DTFJ interface with a system dump or
javadump, see ../../../../com.ibm.java.doc.diagnostics.60/diag/tools/
dtfj_overview.html.

Chapter 11. Troubleshooting and support 135

136 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

Chapter 12. Reference

This reference information applies only to IBM SDK, Java Technology Edition,
Version 6 (J9 VM 2.6).

General reference information for IBM SDK, Java Technology Edition, Version 6 can
be found in the User Guides and Diagnostic Guide that are available in the IBM
Information Center: http://www.ibm.com/support/knowledgecenter/
SSYKE2_6.0.0/welcome/welcome_javasdk_version.html.

Command-line options
There are a number of command-line options that you can use with the runtime
environment.

These options supplement the command-line options documented in the IBM SDK,
Java Technology Edition, Version 6 guides.

This chapter provides the following information:
v “System property command-line options”
v “JVM command-line options” on page 139
v “Class data sharing command-line options” on page 154
v “JIT and AOT command-line options” on page 162
v “Garbage collection command-line options” on page 164

System property command-line options
Use the system property command-line options to set up your system.

-D<name>=<value>
Sets a system property.

-Dcom.ibm.CORBA.Debug.Component
This system property can be used with -Dcom.ibm.CORBA.Debug=true to generate
trace output for specific Object Request Broker (ORB) subcomponents such as
MARSHAL or DISPATCH. This finer level of tracing helps you debug problems
with ORB operations.

-Dcom.ibm.CORBA.Debug.Component=name
Where name can be one of the following ORB subcomponents:
v DISPATCH

v MARSHAL

v TRANSPORT

v CLASSLOADER

v ALL

When you want to trace more than one of these subcomponents, each
subcomponent must be separated by a comma. The default value is ALL.

Note: This option has no effect unless it is used with the system property
-Dcom.ibm.CORBA.Debug=true.

© Copyright IBM Corp. 2011, 2017 137

|
|
|
|
|

|
|

|

|

|

|

|

|
|

|
|

http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/welcome/welcome_javasdk_version.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/welcome/welcome_javasdk_version.html

The following setting enables tracing for the DISPATCH, TRANSPORT, and CLASSLOADER
components:
-Dcom.ibm.CORBA.Debug=true -Dcom.ibm.CORBA.Debug.Component=DISPATCH,TRANSPORT,CLASSLOADER

-Dcom.ibm.UseCLDR16
Use the -Dcom.ibm.UseCLDR16 system property to change the default locale
translation files used.

Purpose

From service refresh 1, changes are made to the locale translation files to make
them consistent with Oracle JDK 6. To understand the differences in detail, see
http://www.ibm.com/support/docview.wss?uid=swg21568667. Include the
-Dcom.ibm.UseCLDR16 system property on the command-line to revert to the locale
translation files used in earlier releases.

-Dcom.ibm.xtq.processor.overrideSecureProcessing
This system property affects the XSLT processing of extension functions or
extension elements when Java security is enabled.

Purpose

From service refresh 6, the use of extension functions or extension elements is not
allowed when Java security is enabled. This change is introduced to enhance
security. This system property can be used to revert to the behavior in earlier
releases.

Parameters

com.ibm.xtq.processor.overrideSecureProcessing=true
To revert to the behavior in earlier releases of the IBM SDK, set this system
property to true.

-Dibm.disableAltProcessor
This option stops the ALT-key, when pressed, from highlighting the first menu in
the active window of the user interface.

-Dibm.disableAltProcessor=true
Set this property on the command line to prevent the ALT-key from
highlighting the first menu in the active window.

Note: If your application uses a Windows Look and Feel
(com.sun.java.swing.plaf.windows.WindowsLookAndFeel), this option has no
effect.

-Djava.util.Arrays.useLegacyMergeSort
Changes the implementation of java.util.Collections.sort(list, comparator) in this
release.

The Java SE 6 implementation of java.util.Collections.sort(list, comparator) relies on
the Comparator function, which implements the conditions greater than, less than,
and equal. However, the Java SE 5.0 implementation of
java.util.Collections.sort(list, comparator) can accept the Comparator function,
which implements only the conditions greater than and less than. From IBM SDK,
Java Technology Edition, Version 6 (J9 VM 2.6) service refresh 8 fix pack 1
onwards, you can switch between the Java SE 5.0 and Java SE 6 implementation.

138 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|
|

|

|
|
|

|

|
|
|
|
|

|
|
|

|

|
|
|
|

|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|

http://www.ibm.com/support/docview.wss?uid=swg21568667

-Djava.util.Arrays.useLegacyMergeSort=[true | false]
Setting the value to true changes the Comparator function to the Java SE 5.0
implementation. The default for this setting is false.

JVM command-line options
This reference section provides a list of command-line options that are new, or
changed, when IBM SDK, Java Technology Edition, Version 6 uses an IBM J9 2.6
virtual machine.

To see a complete list of JVM command-line options, see the Java 6 Diagnostics
Guide, ../../../com.ibm.java.doc.diagnostics.60/diag/appendixes/cmdline/
commands_jvm.html. Use these options to configure your JVM. The options
prefixed with -X are nonstandard.

Conventions

Options shown with values that are in braces signify that one of the values must
be chosen. For example:

-Xverify:{remote | all | none}

Options shown with values that are in brackets signify that the values are optional.
For example:

-Xrunhprof[:help][<suboption>=<value>...]

-XCEEHDLR (31-bit z/OS only)
The -XCEEHDLR option is used to control 31-bit z/OS JVM Language Environment
condition handling.

The -XCEEHDLR option is available on the 31-bit z/OS JVM. Use the -XCEEHDLR
option if you want the new behavior for the Java and COBOL interoperability
batch mode environment, because this option makes signal and condition handling
behavior more predictable in a mixed Java and COBOL environment.

When the -XCEEHDLR option is enabled, a condition triggered by an arithmetic
operation while executing a Java Native Interface (JNI) component causes the JVM
to convert the Language Environment condition into a Java ConditionException.

When the -XCEEHDLR option is used

The JVM does not install POSIX signal handlers for the following signals:
v SIGBUS
v SIGFPE
v SIGILL
v SIGSEGV
v SIGTRAP

Instead, user condition handlers are registered by the JVM, using the CEEHDLR()
method. These condition handlers are registered every time a thread calls into the
JVM. Threads call into the JVM using the Java Native Interface and including the
invocation interfaces, for example JNI_CreateJavaVM.

Chapter 12. Reference 139

|
|
|

The runtime environment continues to register POSIX signal handlers for the
following signals:
v SIGABRT
v SIGINT
v SIGQUIT
v SIGTERM

Signal chaining using the libjsig.so library is not supported.

Behavior of JVM condition handlers when the -XCEEHDLR option is used

Condition handler actions take place in the following sequence:
1. All severity 0 and severity 1 conditions are percolated.
2. If a Language Environment condition is triggered in JNI code as a result of an

arithmetic operation, the JVM condition handler resumes executing Java code
as if the JNI native code had thrown a
com.ibm.le.conditionhandling.ConditionException exception. This exception
class is a subclass of java.lang.RuntimeException.

Note: The Language Environment conditions that correspond to arithmetic
operations are CEE3208S through CEE3234S. However, the Language
Environment does not deliver conditions CEE3208S, CEE3213S, or CEE3234S to
C applications, so the JVM condition handler will not receive them.

3. If the condition handling reaches this step, the condition is considered to be
unrecoverable. RAS diagnostic information is generated, and the JVM ends by
calling the CEE3AB2() service with abend code 3565, reason code 0, and
cleanup code 0.

-Xcheck
Use the -Xcheck option to check critical JVM functions.

Purpose

The -Xcheck option checks JVM functions, including the class loader, garbage
collector, JNI function, and memory. The syntax for this option is
-Xcheck[:<option>].

Parameters

-Xcheck:classpath
Displays a warning message if an error is discovered in the class path; for
example, a missing directory or JAR file.

-Xcheck:dump
Runs checks on AIX and Linux operating system settings during JVM startup.
Messages are issued if the operating system has dump options or limits set
that might truncate system dumps.

Note: Not supported on Windows or z/OS.

On AIX, the following messages are possible:

JVMJ9VM133W The system core size hard ulimit is set to <value>,system
dumps may be truncated

This message indicates that the AIX operating system user limit is set
to restrict the size of system dumps to the value indicated. If a system
dump is produced by the JVM it might be truncated, and therefore of

140 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|
|
|
|

|

|

|
|
|
|
|

greatly reduced value in investigating the cause of crashes and other
issues. For more information on how to set user limits on AIX, see
Enabling full AIX core files.

JVMJ9VM134W The system fullcore option is set to FALSE, system dumps may
be truncated

This message indicates that the AIX operating system Enable full
CORE dump option is set to FALSE. This setting might result in truncated
system dumps. For more information about how to set this option
correctly on AIX, see Enabling full AIX core files.

On Linux, the following messages are possible:

JVMJ9VM133W The system core size hard ulimit is set to <value>, system
dumps may be truncated.

This message indicates that the Linux operating system user limit is set
to restrict the size of system dumps to the value indicated. If a system
dump is produced by the JVM, it might be truncated and therefore of
greatly reduced value in investigating the cause of crashes and other
issues. Review the documentation that is provided for your operating
system to correctly configure the value for ulimits. For further
information, see Setting up and checking your Linux environment.

JVMJ9VM135W /proc/sys/kernel/core_pattern setting "|/usr/libexec/abrt-
hook-ccpp %s %c %p %u %g %t e" specifies that core dumps are to be piped
to an external program. The JVM may be unable to locate core dumps and
rename them.

This message means that an external program, abrt-hook-ccpp, is
configured in the operating system to intercept any system dump files
that are generated. This program is part of the Automatic Bug
Reporting Tool (ABRT). For more information, see Automatic Bug
Reporting Tool. This tool might interfere with the JVM's system dump
file processing by renaming or truncating system dumps. Review the
configuration of the ABRT tool and messages that are written by the
tool in /var/log/messages. If problems occur when generating system
dumps from the JVM, consider disabling ABRT.

JVMJ9VM135W /proc/sys/kernel/core_pattern setting "|/usr/share/apport/
apport %p %s %c" specifies that core dumps are to be piped to an
external program. The JVM may be unable to locate core dumps and rename
them. This message means that an external program, apport, is configured in

the operating system to intercept any system dump files that are
generated. For more information about this tool, see: Apport The tool
might interfere with the JVM's system dump file processing by
renaming or truncating system dumps. Review the configuration of the
Apport tool and messages that are written by the tool in
/var/log/apport.log. If problems occur when generating system
dumps from the JVM, consider disabling the Apport tool.

JVMJ9VM136W "/proc/sys/kernel/core_pattern setting "/tmp/cores/core.%e.
%p.%h.%t " specifies a format string for renaming core dumps. The JVM
may be unable to locate core dumps and rename them.

This message indicates that the Linux /proc/sys/kernel/core_pattern
option is set to rename system dumps. The tokens that are used in the
operating system dump name might interfere with the JVM's system
dump file processing, in particular with file names specified in the
JVM -Xdump options. If problems occur when generating system dumps
from the JVM, consider changing the /proc/sys/kernel/core_pattern
setting to the default value of core.

Chapter 12. Reference 141

|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
||
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/ch-abrt.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/ch-abrt.html
https://wiki.ubuntu.com/Apport

-Xcheck:gc[:<scan options>][:<verify options>][:<misc options>]
Runs checks on garbage collection. By default, no checks are done. See the
output of -Xcheck:gc:help for more information.

-Xcheck:jni[:help][:<option>=<value>]
Runs additional checks for JNI functions. This option is equivalent to
-Xrunjnichk. By default, no checks are done.

-Xcheck:memory[:<option>]
Identifies memory leaks inside the JVM using strict checks that cause the JVM
to exit on failure. If no option is specified, all is used by default. The available
options are as follows:

all
Enables checking of all allocated and freed blocks on every free and
allocate call. This check of the heap is the most thorough. It typically
causes the JVM to exit on nearly all memory-related problems soon after
they are caused. This option has the greatest affect on performance.

callsite=<number of allocations>

Displays callsite information every <number of allocations>. De-allocations
are not counted. Callsite information is presented in a table with separate
information for each callsite. Statistics include:
v The number and size of allocation and free requests since the last report.
v The number of the allocation request responsible for the largest

allocation from each site.

Callsites are presented as sourcefile:linenumber for C code and assembly
function name for assembler code.

Callsites that do not provide callsite information are accumulated into an
"unknown" entry.

failat=<number of allocations>
Causes memory allocation to fail (return NULL) after <number of
allocations>. Setting <number of allocations> to 13 causes the 14th allocation
to return NULL. De-allocations are not counted. Use this option to ensure
that JVM code reliably handles allocation failures. This option is useful for
checking allocation site behavior rather than setting a specific allocation
limit.

ignoreUnknownBlocks
Ignores attempts to free memory that was not allocated using the
-Xcheck:memory tool. Instead, the -Xcheck:memory statistics that are
printed out at the end of a run indicates the number of “unknown” blocks
that were freed.

mprotect=<top|bottom>
Locks pages of memory on supported platforms, causing the program to
stop if padding before or after the allocated block is accessed for reads or
writes. An extra page is locked on each side of the block returned to the
user.

If you do not request an exact multiple of one page of memory, a region on
one side of your memory is not locked. The top and bottom options control
which side of the memory area is locked. top aligns your memory blocks
to the top of the page (lower address), so buffer underruns result in an
application failure. bottom aligns your memory blocks to the bottom of the
page (higher address) so buffer overruns result in an application failure.

142 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

Standard padding scans detect buffer underruns when using top and
buffer overruns when using bottom.

nofree
Keeps a list of blocks already used instead of freeing memory. This list,
and the list of currently allocated blocks, is checked for memory corruption
on every allocation and deallocation. Use this option to detect a dangling
pointer (a pointer that is "dereferenced" after its target memory is freed).
This option cannot be reliably used with long-running applications (such
as WebSphere Application Server), because “freed” memory is never
reused or released by the JVM.

noscan
Checks for blocks that are not freed. This option has little effect on
performance, but memory corruption is not detected. This option is
compatible only with subAllocator, callsite, and callsitesmall.

quick
Enables block padding only and is used to detect basic heap corruption.
Every allocated block is padded with sentinel bytes, which are verified on
every allocate and free. Block padding is faster than the default of checking
every block, but is not as effective.

skipto=<number of allocations>
Causes the program to check only on allocations that occur after <number
of allocations>. De-allocations are not counted. Use this option to speed up
JVM startup when early allocations are not causing the memory problem.
The JVM performs approximately 250+ allocations during startup.

subAllocator[=<size in MB>]
Allocates a dedicated and contiguous region of memory for all JVM
allocations. This option helps to determine whether user JNI code or the
JVM is responsible for memory corruption. Corruption in the JVM
subAllocator heap suggests that the JVM is causing the problem;
corruption in the user-allocated memory suggests that user code is
corrupting memory. Typically, user and JVM allocated memory are
interleaved.

zero
Newly allocated blocks are set to 0 instead of being filled with the
0xE7E7xxxxxxxxE7E7 pattern. Setting these blocks to 0 helps you to
determine whether a callsite is expecting zeroed memory, in which case the
allocation request is followed by memset(pointer, 0, size).

Note: The -Xcheck:memory option cannot be used in the -Xoptionsfile.

-Xcheck:vm[:<option>]
Runs additional checks on the JVM. By default, no checks are made. For more
information, run -Xcheck:vm:help.

-XcompilationThreads
You can change the number of threads used during JIT compilation with this
option.

Purpose

This option allows you to specify the number of compilation threads used by the
JIT compiler. The number of threads must be in the range 1 - 4, inclusive. Any
other value prevents the JVM from starting successfully.

Chapter 12. Reference 143

Setting the compilation threads to zero does not prevent the JIT from working.
Instead, if you do not want the JIT to work, use the -Xint option.

When multiple compilation threads are used, the JIT might generate several
diagnostic log files. A log file is generated for each compilation thread. The naming
convention for the log file generated by the first compilation thread follows the
same pattern as for IBM SDK, Java Technology Edition, Version 6:
<specified_filename>.<date>.<time>.<pid>

The first compilation thread has ID 0. Log files generated by the second and
subsequent compilation threads append the ID of the corresponding compilation
thread as a suffix to the log file name. The pattern for these log file names is as
follows:
<specified_filename>.<date>.<time>.<pid>.<compThreadID>

For example, the second compilation thread has ID 1. The result is that the
corresponding log file name has the form:
<specified_filename>.<date>.<time>.<pid>.1

Parameters

<number_of_threads>
Specifies the number of compilation threads. This number must be an integer
value in the range 1 - 4, inclusive. Any other value prevents the JVM from
starting successfully.

Use the following option to specify that the JIT compiler uses two compilation
threads:
-XcompilationThreads2

-Xcompressedrefs and -Xnocompressedrefs (64-bit only)
Specify the -Xcompressedrefs option, on 64-bit operating systems, to use 32-bit
values for references.

When using compressed references, the JVM stores all references to objects, classes,
threads, and monitors as 32-bit values. Use the -Xcompressedrefs command-line
option to enable compressed references in a 64-bit JVM. Use the
-Xnocompressedrefs command-line option to disable compressed references. Only
64-bit JVMs recognize these options.

From this release, the -Xcompressedrefs option is the default setting for all
operating systems other than z/OS, when the value of the -Xmx option is less than
or equal to 25 GB. For z/OS operating systems, or values of -Xmx that are greater
than 25 GB, compressed references are still disabled by default.

For more information about these options, see JVM command-line options in the
diagnostic guide for Version 6.

-Xconcurrentlevel
Use the -Xconcurrentlevel option to modify memory allocation options.

Purpose

Specifies the allocation “tax” rate.

144 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|
|
|

|
|
|
|
|

|
|
|
|

|
|

Parameters

-Xconcurrentlevel<number>

<number> indicates the ratio between the amount of heap allocated, and the
amount of heap marked. The default ratio is 8.

To turn off concurrent marking, set <number> to the value 0.

Example
1. To turn off concurrent marking, use -Xconcurrentlevel0.

-Xjni
Sets JNI options.

-Xjni:<suboptions>
You can use the following suboption with the -Xjni option:

-Xjni:arrayCacheMax=[<size in bytes>|unlimited]
Sets the maximum size of the array cache. The default size is 128 KB.

-Xlog
Use the -Xlog option to modify the types of messages that the JVM writes to the
system log. Changes do not affect messages written to the standard error stream
(stderr).

Purpose

By default, all error and vital messages issued by the JVM are logged. You can
change the default by using the -Xlog option.

Parameters

-Xlog[:help]|[:<options>]

Optional parameters are:

help
Details the options available.

error
Turns on logging for all error messages (default).

vital
Turns on logging for selected information messages JVMDUMP006I,
JVMDUMP032I, and JVMDUMP033I, which provide valuable additional
information about dumps produced by the JVM (default).

info
Turns on logging for all information messages.

warn
Turns on logging for all warning messages.

config
Turns on logging for all configuration messages.

all
Turns on logging for all messages.

none
Turns off logging for all messages.

Chapter 12. Reference 145

The options all none, and help must be used on their own and cannot be
combined. However, the other options can be grouped.

To obtain detailed information about logged messages, see the IBM SDK for
Java Messages guide: http://www.ibm.com/support/knowledgecenter/
SSYKE2_6.0.0/welcome/welcome_javasdk_version.html.

Examples
1. To include error, vital and warning messages use -Xlog:error,vital,warn.
2. To turn off message logging use -Xlog:none.

-Xlockword
The -Xlockword option enables performance improvements.

Purpose

This tuning option is available to test whether performance optimizations are
negatively impacting an application. See “Application performance issues” on page
59

Parameters

The following parameters are available:

-Xlockword:mode=all
This option reverts to behavior that is closer to earlier versions.

-Xlockword:default
This option reestablishes the new behavior.

-Xlockword:nolockword=<class_name>
This option removes the lockword from object instances of the class
<class_name>, reducing the space required for these objects. However, this
action might have an adverse effect on synchronization for those objects. You
should not use this option unless you are directed to by IBM service.

-Xlp
Use the -Xlp option to request the allocation of large pages.

Purpose

This option requests the JVM to allocate the Java object heap or the JIT code cache
by using large pages.

Parameters

The following parameters are available:

-Xlp:codecache:pagesize=<size> (AIX, Linux, and Windows
-Xlp:codecache:pagesize=<size>,pageable (z/OS)

Requests the JVM to allocate the JIT code cache by using large page sizes. If
the requested large page size is not available, the JVM starts, but the JIT code
cache is allocated by using a platform-defined size. A warning is displayed
when the requested page size is not available.

For service refresh 4, -Xlp:codecache:pagesize=<size> is supported on Linux
on x86, Linux on z Systems, and Windows only.

146 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|

http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/welcome/welcome_javasdk_version.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/welcome/welcome_javasdk_version.html

To obtain the large page sizes available and the current setting, use the
-verbose:sizes option. Note the current settings are the requested sizes and
not the sizes obtained.

AIX: The code cache page size is controlled by the DATAPSIZE setting of the
LDR_CNTRL environment variable. The page size cannot be controlled by the
-Xlp:codecache:pagesize=<size> option. Specifying any other page size results
in a warning that the page size is not available. The -verbose:sizes output
reflects the current operating system setting. For more information about the
LDR_CNTRL environment variable, see: Working with the LDR_CNTRL
environment variable.

Linux PPC: The code cache page size cannot be controlled by the
-Xlp:codecache:pagesize=<size> option. Specifying any other page size results
in a warning that the page size is not available. The -verbose:sizes output
reflects the current operating system setting.

z/OS: The -Xlp:codecache:pagesize=<size>,pageable option supports only a
large page size of 1 M. The use of 1 M pageable large pages for the JIT code
cache can improve the runtime performance of some Java applications. A page
size of 4 K can also be used.

For more information, see “Configuring large page memory allocation” on
page 37.

-Xlp:objectheap:pagesize=<size>,[strict],[warn] (AIX, Linux and Windows)
-Xlp:objectheap:pagesize=<size>,[strict],[warn],[non]pageable (z/OS)

Where:
v <size> is the large page size that you require for the Java object heap.
v strict causes an error message to be generated if large pages are requested

but cannot be obtained. This suboption causes the JVM to end.
v warn causes a warning message to be generated if large pages are requested

but cannot be obtained. This suboption allows the JVM to continue.

Note: If both suboptions are specified, strict overrides warn.

If the operating system does not have sufficient resources to satisfy the request,
the page size you requested might not be available when the JVM starts up. By
default, the JVM starts and the Java object heap is allocated by using a
different platform-defined page size. Alternatively, you can use the strict or
warn suboptions to customize behavior.

To obtain the large page sizes available and the current setting, use the
-verbose:sizes option. Note the current settings are the requested sizes and
not the sizes obtained. For object heap size information, check the -verbose:gc
output.

z/OS: The [non]pageable argument defines the type of memory to allocate for
the Java object heap.

Supported page sizes are 2G nonpageable, 1 M nonpageable, and 1 M
pageable. A page size of 4 K can also be used.

All platforms: If you are running an earlier version that does not include the
strict or warn suboptions, an error message is not generated when there are
insufficient resources available. This limitation and a workaround for verifying
which page size is used can be found in Known limitations.

For more information, see “Configuring large page memory allocation” on
page 37.

Chapter 12. Reference 147

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|

|

|

|

|

-Xlp[<size>]

AIX: Requests the JVM to allocate the Java object heap (the heap from which
Java objects are allocated) with large (16 MB) pages, if a size is not specified. If
large pages are not available, the Java object heap is allocated with the next
smaller page size that is supported by the system.

Linux: Requests the JVM to allocate the Java object heap by using large page
sizes. If large pages are not available, the JVM does not start, displaying an
error message. The JVM uses shmget() to allocate large pages for the heap.
Large pages are supported by systems with Linux kernels v2.6 or higher. By
default, large pages are not used.

If a <size> is specified, the JVM attempts to allocate the JIT code cache memory
by using pages of that size. If unsuccessful, or if executable pages of that size
are not supported, the JIT code cache memory is allocated by using the default
or smallest available executable page size.

Note: Linux for System z® supports only a large page size of 1 M.

Windows: Requests the JVM to allocate the Java object heap with large pages.
This command is available on Windows Server 2003 and later, and Windows
Vista and later releases.

If a <size> is specified, the JVM attempts to allocate the JIT code cache memory
by using pages of that size. If unsuccessful, or if executable pages of that size
are not supported, the JIT code cache memory is allocated by using the default
or smallest available executable page size.

z/OS: Requests the JVM to allocate the Java object heap by using large page
sizes. If <size> is not specified, the 1M nonpageable size is used. If large pages
are not supported by the hardware, or enabled in RACF, the JVM does not
start and produces an error message.

Allocating large pages by using -Xlp[<size>] is only supported on the 64-bit
SDK for z/OS, not the 31-bit JVM for z/OS.

If a <size> is specified, the JVM attempts to allocate the JIT code cache memory
by using pages of that size. If unsuccessful, or if executable pages of that size
are not supported, 1 M pageable is attempted. If 1 M pageable is not available,
the JIT code cache memory is allocated using the default or smallest available
executable page size.

On z/OS, -Xlp[<size>] supports only a large page size of 2G and 1 M
(nonpageable). If the <size> parameter is not specified, 1 M (nonpageable) is
used.

All platforms: To obtain the large page sizes available and the current setting,
use the -verbose:sizes option. Note the current settings are the requested
sizes and not the sizes obtained. For object heap size information, check the
-verbose:gc output.

The JVM ends if there are insufficient operating system resources to satisfy the
request. However, an error message is not issued. This limitation and a
workaround for verifying which page size is used can be found in Known
limitations.

For more information, see “Configuring large page memory allocation” on
page 37.

148 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

-Xscdmx
Controls the memory required for storing the class debug data area used by shared
classes.

Purpose

You can use the -Xscdmx option to control the size of the class debug area when
creating a shared class cache. The -Xscdmx option works in a similar way to the
-Xscmx option used to control the overall size of the shared class cache. The size of
-Xscdmx must not exceed the size of -Xscmx. By default, the size of the class debug
area is a percentage of the free bytes in a newly created or empty cache. The
-Xscdmx option provides the ability to tune the cache region size.

If you use the -Xscdmx option, additional information is provided in “printStats
utility” on page 106 and “Cache performance” on page 102.

Using-Xnolinenumbers does not create a class debug area. However, a class debug
area is still created if you use the -Xscdmx option with the -Xnolinenumbers option
on the command line.

Parameters

-Xscdmx<x>
Sets the size of the shared class cache debug attribute area to <x>, which is
expressed as an absolute value.

Example

An example use of the -Xscdmx option is as follows:
$java -Xscdmx1m -Xshareclasses:name=jim,reset -version

-Xscmaxjitdata
Sets the maximum shared classes cache space reserved for JIT data.

Purpose

You can use the -Xscmaxjitdata option to set the maximum cache space reserved
for JIT shared classes. The -Xscmaxjitdata option works in a similar way to the
-Xscmx option used to control the overall size of the shared class cache.

If you use the -Xscmaxjitdata option, additional information is in the “printStats
utility” on page 106.

Parameters

-Xscmaxjitdata<x>
Optionally applies a maximum number of bytes in the class cache that can be
used for JIT data. This option is useful if you want a certain amount of cache
space guaranteed for non-JIT data. If this option is not specified, the maximum
limit for JIT data is the amount of free space in the cache. The value of this
option must not be smaller than the value of -Xscminjitdata, and must not be
larger than the value of -Xscmx.

Example

An example use of the -Xscmaxjitdata option is as follows:
$java -Xscmaxjitdata1m -Xshareclasses:name=jim,reset -version

Chapter 12. Reference 149

-Xscminjitdata
Sets the minimum shared classes cache space reserved for JIT data.

Purpose

You can use the -Xscminjitdata option to set the minimum cache space reserved
for JIT shared classes. The -Xscminjitdata option works in a similar way to the
-Xscmx option used to control the overall size of the shared class cache.

If you use the -Xscminjitdata option, additional information is in the “printStats
utility” on page 106.

Parameters

-Xscminjitdata<x>
Optionally applies a minimum number of bytes in the class cache to reserve
for JIT data. If this option is not specified, no space is reserved for JIT data,
although JIT data is still written to the cache until the cache is full or the
-Xscmaxjitdata limit is reached. The value of this option must not exceed the
value of -Xscmx or -Xscmaxjitdata. The value of -Xscminjitdata must always
be considerably less than the total cache size, because JIT data can be created
only for cached classes. If the value of -Xscminjitdata equals the value of
-Xscmx, no class data or JIT data can be stored.

Example

An example use of the -Xscminjitdata option is as follows:
$java -Xscminjitdata1m -Xshareclasses:name=jim,reset -version

-Xsignal:userConditionHandler=percolate (31-bit z/OS only)
This option is used to control 31-bit z/OS JVM Language Environment condition
handling. The behavior is similar to that of the -XCEEHDLR option, but differs in
the severity level of the affected Language Environment conditions.

As with the -XCEEHDLR option, the JVM registers user condition handlers to handle
the z/OS exceptions that would otherwise be handled by the JVM POSIX signal
handlers for the SIGBUS, SIGFPE, SIGILL, SIGSEGV, and SIGTRAP signals. The
JVM does not install POSIX signal handlers for these signals. This option differs
from the -XCEEHDLR option in that the JVM percolates all Language Environment
conditions that were not triggered and expected by the JVM during normal
running, including conditions that are severity 2 or greater. The JVM generates its
own diagnostic information before percolating severity 2 or greater conditions.

Notes:

v The JVM is in an undefined state after percolating a severity 2 or greater
condition. Applications cannot resume running then call back into, or return to,
the JVM.

v This option is not compatible with the following options:
– -XCEEHDLR

– -Xsignal:posixSignalHandler=cooperativeShutdown

Related reference:
“-XCEEHDLR (31-bit z/OS only)” on page 139
The -XCEEHDLR option is used to control 31-bit z/OS JVM Language Environment
condition handling.

150 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|

|

|

|

|

|
|
|

-Xthr
The -Xthr option enables performance improvements.

Purpose

This tuning option is available to test whether performance optimizations are
negatively impacting an application. See “Application performance issues” on page
59

Parameters

The following parameters are available:

-Xthr:<AdaptSpin|noAdaptSpin>
These options are used to turn on or off a specific optimization.

-Xthr:<cfsYield|noCfsYield> (Linux only)
The default value, cfsYield, enables threading optimizations for applications
running on Linux with the Completely Fair Scheduler (CFS) in the default
mode (sched_compat_yield=0). The noCfsYield value disables these threading
optimizations. You might want to use the noCfsYield value if your application
uses the Thread.yield() method extensively, because otherwise you might see a
performance decrease in cases where yielding is not beneficial.

-Xthr:<secondarySpinForObjectMonitors|noSecondarySpinForObjectMonitors>
These options are used to turn on or off a specific optimization.

-Xtune
The -Xtune option enables performance improvements.

Purpose

This tuning option is available to optimize JVM performance.

Parameters

The following parameters are available:

-Xtune:elastic
This option turns on JVM function that accommodates changes in the machine
configuration dynamically at run time. Such changes might include the number
of processors, or the amount of installed RAM.

Note: From service refresh 7, this option has no effect.

-Xzero
Reduces the memory footprint of the JVM when running multiple JVM invocations
concurrently.

Purpose

You can use the -Xzero option to reduce the amount of memory used by your
runtime environment when you are running multiple JVM invocations at the same
time. This option might not be appropriate for all types of applications because it
changes the implementation of java.util.ZipFile, which might cause extra
memory usage.

Chapter 12. Reference 151

|
|
|
|
|
|
|

|
|

|

|

|

|

|
|
|
|

|

|

Parameters

-Xzero[:<option>]

Optional parameters are:

j9zip
Enables the j9zip sub-option.

noj9zip
Enables the noj9zip sub-option.

sharezip
Enables the sharezip sub-option.

nosharezip
Enables the nosharezip sub-option.

sharebootzip
Enables the sharebootzip sub-option (default).

nosharebootzip
Enables the nosharebootzip sub-option.

none
disables all sub-options.

describe
Prints the sub-options in effect.

Because future versions might include more default options, -Xzero options are
used to specify the sub-options that you want to disable. By default, -Xzero
enables j9zip and sharezip. A combination of j9zip and sharezip enables all
jar files to have shared caches:
v j9zip - uses a new java.util.ZipFile implementation. This sub-option is

not a requirement for sharezip; however, if j9zip is not enabled, only the
bootstrap jars have shared caches.

v sharezip - puts the j9zip cache into shared memory. The j9zip cache is a
map of .zip entry names to file positions, used to quickly find entries in the
.zip file. You must enable -Xshareclasses to avoid a warning message.
When using the sharezip sub-option, note that every opened .zip file and
.jar file stores the j9zip cache in shared memory. You might fill the shared
memory when opening multiple new .zip files and .jar files. The affected
API is java.util.zip.ZipFile (superclass of java.util.jar.JarFile). The
.zip and .jar files do not have to be on a class path.

v sharebootzip - enabled by default on all platforms. Puts the .zip entry
caches for bootstrap jar files into the shared cache. A .zip entry cache is a
map of .zip entry names to file positions, used to quickly find entries in the
.zip file.

The system property com.ibm.zero.version is defined, and has a current value
of 2. Although -Xzero is accepted on all platforms, support for the sub-options
varies by platform:
v -Xzero with the sharebootzip and nosharebootzip sub-options are accepted

on all platforms.
v -Xzero with all other sub-options are available only on Windows x86-32 and

Linux x86-32 platforms.

-XX command-line options
JVM command-line options that are specified with -XX are not recommended for
casual use.

152 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

These options are subject to change without notice.

To see a complete list of JVM -XX command-line options, see the Java 6
Diagnostics Guide, ../../../com.ibm.java.doc.diagnostics.60/diag/appendixes/
cmdline/commands_jvm_xx.html.

-XX:[+|-]handleSIGXFSZ:

This option is available only on the Linux platform and affects the handling of the
operating system signal SIGXFSZ. This signal is generated when a process attempts
to write to a file that causes the maximum file size ulimit to be exceeded. If the
signal is not handled by the JVM, the operating system ends the process with a
core dump.

+XX:+handleSIGXFSZ
When this option is set, the JVM handles the signal SIGXFSZ and continues,
without ending. When a file is written from a Java API class that exceeds the
maximum file size ulimit, an exception is raised. Log files that are created by
the JVM are silently truncated when they reach the maximum file size ulimit.

-XX:-handleSIGXFSZ
When this option is set, the JVM does not handle the signal SIGXFSZ. If the
maximum file size ulimit for any file is reached, the operating system ends the
process with a core dump. This option is the default.

-XX:[+|-]LazySymbolResolution (Linux only):

The -XX:+LazySymbolResolution option forces the JVM to delay symbol resolution
for each function in a user native library, until the function is called. This option is
the default setting.

The -XX:-LazySymbolResolution option forces the JVM to immediately resolve
symbols for all functions in a user native library when the library is loaded.

These options apply only to functions; variable symbols are always resolved
immediately when loaded. If you attempt to use these options on an operating
system other than Linux, the options are accepted, but ignored.

-XXnosuballoc32bitmem (z/OS):

When using compressed references on a 64-bit JVM, use the
-XXnosuballoc32bitmem option to force the JVM to use 31-bit memory allocation
functions provided by the operating system.

Purpose

This option is provided as a workaround for customers who need to use fewer
pages of 31-bit virtual storage per JVM invocation. Using this option might result
in a small increase in the number of frames of central storage used by the JVM.
However, the option frees 31-bit pages for use by native code or other applications
in the same address space.

If you do not use this option, the JVM uses an allocation strategy for 31-bit
memory that reserves a region of 31-bit virtual memory. However, because the
-XXnosuballoc32bitmem option forces the JVM to use the z/OS allocation strategy,
virtual memory is not reserved by the JVM.

Chapter 12. Reference 153

|

|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|

|
|
|

|
|

|
|
|

|
|
|

|

-XXsetHWPrefetch:[none|os-default] (AIX only):

The -XXsetHWPrefetch:none option disables hardware prefetch. Hardware prefetch
can improve the performance of applications by prefetching memory, however
because of the workload characteristics of many Java applications, prefetching
often has an adverse effect on performance.

You can disable hardware prefetch on AIX by issuing the command dscrctl -n -s
1. However, this command disables hardware prefetch for all processes, and for all
future processes, which might not be desirable in a mixed workload environment.
Instead, you can use the -XXsetHWPrefetch:none option to disable hardware
prefetch for individual JVMs. The default behavior is to use the hardware prefetch
setting of the operating system.

From service refresh 5, you can revert to the default behavior by using the
-XXsetHWPrefetch:os-default option. Use this option to override a
-XXsetHWPrefetch:none setting that you previously specified on the command line.

-XX:ShareClassesEnableBCI:

This option is equivalent to -Xshareclasses:enableBCI.

Purpose

-XX:ShareClassesEnableBCI can be specified for any version of the IBM J9 virtual
machine, but is ignored by JVMs that are earlier than the IBM J9 2.6 virtual
machine. If BCI support is enabled with this option, you can turn off BCI support
with -Xshareclasses:disableBCI.

For more information about -Xshareclasses:enableBCI and
-Xshareclasses:disableBCI, see “-Xshareclasses” on page 155.

-XX:[+|-]VMLockClassLoader:

This option affects synchronization on class loaders that are not parallel-capable
class loaders, during class loading.

-XX:[+|-]VMLockClassLoader

The option, -XX:+VMLockClassLoader, causes the JVM to force synchronization
on a class loader that is not a parallel capable class loader during class loading.
This action occurs even if the loadClass() method for that classloader is not
synchronized. For information about parallel capable class loaders, see
java.lang.ClassLoader.registerAsParallelCapable() in Java 7. Note that this
option might cause a deadlock if classloaders use non-hierarchical delegation.
For example, setting the system property osgi.classloader.lock=classname
with Equinox is known to cause a deadlock.

When specifying the -XX:-VMLockClassLoader option, the JVM does not force
synchronization on a class loader during class loading. The class loader still
conforms to class library synchronization, such as a synchronized loadClass()
method. This is the default option, which might change in future releases.

Class data sharing command-line options
These command-line options can be used to configure shared classes.

154 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|

|
|
|
|

|
|
|
|
|
|

|
|
|

|

|

|

|
|
|
|

|
|

|

|
|

|

|
|
|
|
|
|
|
|

|
|
|
|

This reference section provides a list of command-line options that are new, or
changed, when IBM SDK, Java Technology Edition, Version 6 uses an IBM J9 2.6
virtual machine. To see a complete list of class data sharing command-line options,
see the Java 6 Diagnostics Guide, ../../../com.ibm.java.doc.diagnostics.60/diag/
appendixes/cmdline/commands_jvm.html

-Xscdmx
Controls the memory required for storing the class debug data area used by shared
classes.

Purpose

You can use the -Xscdmx option to control the size of the class debug area when
creating a shared class cache. The -Xscdmx option works in a similar way to the
-Xscmx option used to control the overall size of the shared class cache. The size of
-Xscdmx must not exceed the size of -Xscmx. By default, the size of the class debug
area is a percentage of the free bytes in a newly created or empty cache. The
-Xscdmx option provides the ability to tune the cache region size.

If you use the -Xscdmx option, additional information is provided in “printStats
utility” on page 106 and “Cache performance” on page 102.

Using-Xnolinenumbers does not create a class debug area. However, a class debug
area is still created if you use the -Xscdmx option with the -Xnolinenumbers option
on the command line.

Parameters

-Xscdmx<x>
Sets the size of the shared class cache debug attribute area to <x>, which is
expressed as an absolute value.

Example

An example use of the -Xscdmx option is as follows:
$java -Xscdmx1m -Xshareclasses:name=jim,reset -version

-Xshareclasses
Controls class data sharing between JVMs. There are a number of changes from
IBM SDK, Java Technology Edition, Version 6.

Purpose

You can use the -Xshareclasses option to control class data sharing. For a full list
of options, see the IBM SDK, Java Technology Edition, Version 6 topic
-Xshareclasses option.

Parameters

-Xshareclasses:<suboption>[,<suboption>...]
where <suboption> includes the following changes from IBM SDK, Java
Technology Edition, Version 6:

cacheDirPerm=<permission>
Available only on AIX, UNIX and z/OS operating systems. Sets UNIX-style
permissions when creating a cache directory. <permission> must be an octal

Chapter 12. Reference 155

|
|
|

number in the ranges 0700 - 0777 or 1700 - 1777. If <permission> is not
valid, the JVM terminates with an appropriate error message.

The permissions specified by this suboption are used only when creating a
new cache directory. If the cache directory already exists, this suboption is
ignored and the cache directory permissions are not changed.

If you set this suboption to 0000, the default directory permissions are
used. If you set this suboption to 1000, the machine default directory
permissions are used, but the sticky bit is enabled.If the cache directory is
the platform default directory, /tmp/javasharedresources, this suboption is
ignored and the cache directory permissions are set to 777. If you do not
set this suboption, the cache directory permissions are set to 777, for
compatibility with earlier Java versions.

disableBCI

Turns off BCI support. This option can be used to override
“-XX:ShareClassesEnableBCI” on page 154.

enableBCI

Allows a JVMTI ClassFileLoadHook event to be triggered every time, for
classes loaded from the cache. This mode also prevents caching of classes
modified by JVMTI agents. For more information about this option, see
“Using the JVMTI ClassFileLoadHook with cached classes” on page 104.
This option is incompatible with the cacheRetransformed option. Using the
two options together causes the JVM to end with an error message, unless
-Xshareclasses:nonfatal is specified. In this case, the JVM continues
without using shared classes.

This mode stores more data into the cache, and creates a Raw Class Data
area by default. See the rcdSize= suboption. When using this suboption,
the cache size might need to be increased with -Xscmx<size>.

A cache created without the enableBCI suboption cannot be reused with
the enableBCI suboption. Attempting to do so causes the JVM to end with
an error message, unless -Xshareclasses:nonfatal is specified. In this case,
the JVM continues without using shared classes. A cache created with the
enableBCI suboption can be reused without specifying this suboption. In
this case, the JVM detects that the cache was created with the enableBCI
suboption and uses the cache in this mode.

findAotMethods=help|{<method_specification>[,<method_specification>]}
(Utility option)

Print the AOT methods in the shared cache that match the method
specifications. Methods that are already invalidated are indicated in the
output. Use this suboption to check which AOT methods in the shared
class cache would be invalidated by using the same method specifications
with the invalidateAotMethods suboption. To learn more about the syntax
to use when you are specifying more than one method specification, see
“Method specification syntax” on page 159.

invalidateAotMethods=help|{<method_specification>[,<method_specification>]}
(Utility option)

Modify the existing shared cache to invalidate the AOT methods matching
the method specifications. Use this suboption to invalidate AOT methods
that cause a failure in the application, without having to destroy the shared
cache. Invalidated AOT methods remain in the shared cache, but are then
excluded from being loaded. JVMs that have not processed the methods, or
new JVMs that use the cache are not affected by the invalidated methods.

156 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|
|

|
|
|

|
|
|
|
|
|
|

|

|
|

|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

The AOT methods are invalidated for the lifetime of the cache, but do not
prevent the AOT methods from being compiled again if a new shared
cache is created. To prevent AOT method compilation into a new shared
cache, use the -Xaot:exclude= option. For more information, see -Xaot. To
identify AOT problems, see Diagnosing JIT or AOT problems. To revalidate
an AOT method, see the revalidateAotMethods suboption. Use the
findAotMethod suboption to determine which AOT methods match the
method specifications. To learn more about the syntax to use when you are
specifying more than one method specification, see “Method specification
syntax” on page 159.

mprotect=[default | all | partialpagesonstartup | onfind |
nopartialpages | none]

Where:
v default: By default, the memory pages that contain the cache are always

protected, unless a specific page is being updated. This protection helps
prevent accidental or deliberate corruption to the cache. The cache
header is not protected by default because this protection has a
performance cost.
After the startup phase, the Java virtual machine (VM) protects partially
filled pages whenever new data is added to the shared class cache in the
following sequence:
– The VM changes the memory protection of any partially filled pages

to read/write.
– The VM adds the data to the cache.
– The VM changes the memory protection of any partially filled pages

to read only.

The protection of partially filled pages is introduced in service refresh 8
fix pack 20 on Linux and Windows platforms.

v all: This option ensures that all the cache pages are protected, including
the header.

v partialpagesonstartup: This option causes the JVM to protect partially
filled pages during startup as well as after the startup phase

v onfind: When this option is specified, the JVM protects partially filled
pages when it reads new data in the cache that is added by another
JVM.

v nopartialpages: Use this option to turn off the protection of partially
filled pages

v none: Specifying this option disables the page protection.

Note: Specifying all has a negative impact on performance. You should
specify all only for problem diagnosis and not for production. Specifying
partialpagesonstartup or onfind options can also have a negative impact
on performance when the cache is being populated. There is no further
impact when the cache is full or no longer being modified.

none
Can be added to the end of a command line to disable class data sharing.
This suboption overrides class sharing arguments found earlier on the
command line. This suboption disables the shared class utility APIs. To
disable class data sharing without disabling utility APIs, use the utilities
suboption. For more information about the shared class utility APIs, see
“Utility APIs” on page 105.

Chapter 12. Reference 157

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|

|
|

|
|

|
|

|
|
|

|
|

persistent
Uses a persistent cache. The cache is created on disk, which persists
beyond operating system restarts. Non-persistent and persistent caches can
have the same name.

AIX: In this release, the persistent suboption is the default setting, and
you no longer have to use the persistent suboption when running utilities
such as destroy on a persistent cache.

rcdSize=nnn

Controls the size of the Raw Class Data Area. The number of bytes passed
to rcdSize must always be less than the total cache size. This value is
always rounded down to the nearest multiple of the system page size. For
example, these variations specify a Raw Class Data Area with a size of 1
MB:
-Xshareclasses:enableBCI,rcdSize=1048576
-Xshareclasses:enableBCI,rcdSize=1024k
-Xshareclasses:enableBCI,rcdSize=1m

If rcdSize is not used, and enableBCI is used, the JVM chooses a default
Raw Class Data Area size.

If rcdSize is used, memory is reserved in the cache regardless of whether
enableBCI is used.

If neither rcdSize or enableBCI is used, nothing is reserved in the cache for
the Raw Class Data Area.

revalidateAotMethods=help|{<method_specification>[,<method_specification>]}
(Utility option)

Modify the shared cache to revalidate the AOT methods that match the
method specifications. Use this suboption to revalidate AOT methods that
were invalidated by using the invalidateAotMethods suboption.
Revalidated AOT methods are then eligible for loading into a JVM, but do
not affect JVMs where the methods have already been processed. To learn
more about the syntax to use when you are specifying more than one
method specification, see “Method specification syntax” on page 159.

safemode
This option is no longer recognized. If you want to turn off class data
sharing, use the none option instead.

utilities
Can be added to the end of a command line to disable class data sharing.
This suboption overrides class sharing arguments found earlier on the
command line. This suboption is like none, but does not disable the shared
class utility APIs. For more information about the shared class utility APIs,
see “Utility APIs” on page 105.

printStats[=<data_types>] (Utility option)
Displays summary information for the cache specified by the name,
cacheDir, and nonpersistent suboptions. The most useful information
displayed is how full the cache is and how many classes it contains. Stale
classes are classes that have been updated on the file system and which the
cache has therefore marked "stale". Stale classes are not purged from the
cache and can be reused.

Specify one or more data types, separated by a plus symbol (+), to
additionally see more detailed information about that type of cache
content. Data types include AOT data, class paths and ROMMethods.See
“printStats utility” on page 106 for more information.

158 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|

|
|
|
|
|

|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|

|

|
|
|

nojitdata
Disables caching of JIT data. JIT data already in the shared data cache can
be loaded.

Example

An example use of the -Xshareclasses option is as follows:
$java -Xshareclasses:name=jim,nojitdata

Method specification syntax

The following examples show how to specify more than one method specification
when you are using the findAotMethods=, invalidateAotMethods=, or
revalidateAotMethods= suboptions.

Braces, {}, are required around the method specification if you specify more than
one method specification. If the specification contains a comma,
<method_specification> is defined as the following string:

[!]{*|[*]<packagename/classname>[*]}[.{*|[*]<methodname>[*]}][({*|[*]<parameters>[*]})]

Parameters are optional, but if specified, the following native signature formats
must be used:
v B for byte
v C for char
v D for double
v F for float
v I for int
v J for long
v S for short
v Z for Boolean
v L<class name>; for objects
v [before the signature means array

If parameters must be specified to distinguish the method, use findAotMethods=
with the string (*) to list all the parameter variations. Copy the signature for the
method that you want from the output. For example, the signature for the
parameters (byte[] bytes, int offset, int length, Charset charset) is
([BIILjava/nio/charset/Charset;).

Here are some examples:
v * - matches all AOT methods.
v java/lang/Object - matches all AOT methods in the java.lang.Object class.
v java/util/* - matches all AOT classes and methods in the java.util package.
v java/util/HashMap.putVal - matches all putVal methods in the

java.util.HashMap class.
v java/util/HashMap.hash(Ljava/lang/Object;) - matches the private

java.util.HashMap.hash(java.lang.Object method.
v *.equals - matches all equals methods in all classes.
v {java/lang/Object,!java/lang/Object.clone} - matches all methods in

java.lang.Object except clone.

Chapter 12. Reference 159

v {java/util/*.*(),java/lang/Object.*(*)} - matches all classes or methods with
no input parameter in the java.util package, and all methods in java.lang.Object.

v {java/util/*.*(),!java/util/*.*()} - matches nothing.

-Xscmaxjitdata
Sets the maximum shared classes cache space reserved for JIT data.

Purpose

You can use the -Xscmaxjitdata option to set the maximum cache space reserved
for JIT shared classes. The -Xscmaxjitdata option works in a similar way to the
-Xscmx option used to control the overall size of the shared class cache.

If you use the -Xscmaxjitdata option, additional information is in the “printStats
utility” on page 106.

Parameters

-Xscmaxjitdata<x>
Optionally applies a maximum number of bytes in the class cache that can be
used for JIT data. This option is useful if you want a certain amount of cache
space guaranteed for non-JIT data. If this option is not specified, the maximum
limit for JIT data is the amount of free space in the cache. The value of this
option must not be smaller than the value of -Xscminjitdata, and must not be
larger than the value of -Xscmx.

Example

An example use of the -Xscmaxjitdata option is as follows:
$java -Xscmaxjitdata1m -Xshareclasses:name=jim,reset -version

-Xscminjitdata
Sets the minimum shared classes cache space reserved for JIT data.

Purpose

You can use the -Xscminjitdata option to set the minimum cache space reserved
for JIT shared classes. The -Xscminjitdata option works in a similar way to the
-Xscmx option used to control the overall size of the shared class cache.

If you use the -Xscminjitdata option, additional information is in the “printStats
utility” on page 106.

Parameters

-Xscminjitdata<x>
Optionally applies a minimum number of bytes in the class cache to reserve
for JIT data. If this option is not specified, no space is reserved for JIT data,
although JIT data is still written to the cache until the cache is full or the
-Xscmaxjitdata limit is reached. The value of this option must not exceed the
value of -Xscmx or -Xscmaxjitdata. The value of -Xscminjitdata must always
be considerably less than the total cache size, because JIT data can be created
only for cached classes. If the value of -Xscminjitdata equals the value of
-Xscmx, no class data or JIT data can be stored.

160 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

Example

An example use of the -Xscminjitdata option is as follows:
$java -Xscminjitdata1m -Xshareclasses:name=jim,reset -version

-Xzero
Reduces the memory footprint of the JVM when running multiple JVM invocations
concurrently.

Purpose

You can use the -Xzero option to reduce the amount of memory used by your
runtime environment when you are running multiple JVM invocations at the same
time. This option might not be appropriate for all types of applications because it
changes the implementation of java.util.ZipFile, which might cause extra
memory usage.

Parameters

-Xzero[:<option>]

Optional parameters are:

j9zip
Enables the j9zip sub-option.

noj9zip
Enables the noj9zip sub-option.

sharezip
Enables the sharezip sub-option.

nosharezip
Enables the nosharezip sub-option.

sharebootzip
Enables the sharebootzip sub-option (default).

nosharebootzip
Enables the nosharebootzip sub-option.

none
disables all sub-options.

describe
Prints the sub-options in effect.

Because future versions might include more default options, -Xzero options are
used to specify the sub-options that you want to disable. By default, -Xzero
enables j9zip and sharezip. A combination of j9zip and sharezip enables all
jar files to have shared caches:
v j9zip - uses a new java.util.ZipFile implementation. This sub-option is

not a requirement for sharezip; however, if j9zip is not enabled, only the
bootstrap jars have shared caches.

v sharezip - puts the j9zip cache into shared memory. The j9zip cache is a
map of .zip entry names to file positions, used to quickly find entries in the
.zip file. You must enable -Xshareclasses to avoid a warning message.
When using the sharezip sub-option, note that every opened .zip file and
.jar file stores the j9zip cache in shared memory. You might fill the shared
memory when opening multiple new .zip files and .jar files. The affected

Chapter 12. Reference 161

API is java.util.zip.ZipFile (superclass of java.util.jar.JarFile). The
.zip and .jar files do not have to be on a class path.

v sharebootzip - enabled by default on all platforms. Puts the .zip entry
caches for bootstrap jar files into the shared cache. A .zip entry cache is a
map of .zip entry names to file positions, used to quickly find entries in the
.zip file.

The system property com.ibm.zero.version is defined, and has a current value
of 2. Although -Xzero is accepted on all platforms, support for the sub-options
varies by platform:
v -Xzero with the sharebootzip and nosharebootzip sub-options are accepted

on all platforms.
v -Xzero with all other sub-options are available only on Windows x86-32 and

Linux x86-32 platforms.

-XX command-line options
JVM command-line options that are specified with -XX are not recommended for
casual use.

These options are subject to change without notice.

To see a complete list of JVM -XX command-line options, see the Java 6
Diagnostics Guide, ../../../com.ibm.java.doc.diagnostics.60/diag/appendixes/
cmdline/commands_jvm_xx.html.

-XX:ShareClassesEnableBCI:

This option is equivalent to -Xshareclasses:enableBCI.

Purpose

-XX:ShareClassesEnableBCI can be specified for any version of the IBM J9 virtual
machine, but is ignored by JVMs that are earlier than the IBM J9 2.6 virtual
machine. If BCI support is enabled with this option, you can turn off BCI support
with -Xshareclasses:disableBCI.

For more information about -Xshareclasses:enableBCI and
-Xshareclasses:disableBCI, see “-Xshareclasses” on page 155.

JIT and AOT command-line options
There are a number of command-line options used by the JVM Just-In-Time (JIT)
and Ahead-Of-Time (AOT) compilers.

This reference section provides a list of command-line options that are new, or
changed, when IBM SDK, Java Technology Edition, Version 6 is used with an IBM
J9 2.6 virtual machine. To see a complete list of JIT and AOT command-line
options, see the Java 6 Diagnostics Guide, ../../../com.ibm.java.doc.diagnostics.60/
diag/appendixes/cmdline/commands_jit.html.

-Xcodecachetotal
Use this option to set the maximum size limit for the JIT code cache. This option
also affects the size of the JIT data cache.

-Xcodecachetotal<size>
For more information about this option, see -Xcodecachetotal in the diagnostic
guide for Version 6.

162 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|

|

|

|

|
|
|
|

|
|

|
|
|

|
|
|

When IBM SDK, Java Technology Edition, Version 6 Version 6 uses an IBM J9
2.6 virtual machine, this option also proportionally increases the maximum size
limit for the JIT data cache, which holds metadata about compiled methods, to
support the additional JIT compilations.

-XcompilationThreads
You can change the number of threads used during JIT compilation with this
option.

Purpose

This option allows you to specify the number of compilation threads used by the
JIT compiler. The number of threads must be in the range 1 - 4, inclusive. Any
other value prevents the JVM from starting successfully.

Setting the compilation threads to zero does not prevent the JIT from working.
Instead, if you do not want the JIT to work, use the -Xint option.

When multiple compilation threads are used, the JIT might generate several
diagnostic log files. A log file is generated for each compilation thread. The naming
convention for the log file generated by the first compilation thread follows the
same pattern as for IBM SDK, Java Technology Edition, Version 6:
<specified_filename>.<date>.<time>.<pid>

The first compilation thread has ID 0. Log files generated by the second and
subsequent compilation threads append the ID of the corresponding compilation
thread as a suffix to the log file name. The pattern for these log file names is as
follows:
<specified_filename>.<date>.<time>.<pid>.<compThreadID>

For example, the second compilation thread has ID 1. The result is that the
corresponding log file name has the form:
<specified_filename>.<date>.<time>.<pid>.1

Parameters

<number_of_threads>
Specifies the number of compilation threads. This number must be an integer
value in the range 1 - 4, inclusive. Any other value prevents the JVM from
starting successfully.

Use the following option to specify that the JIT compiler uses two compilation
threads:
-XcompilationThreads2

-Xquickstart
Use the -Xquickstart option to enable optimizations that are intended to improve
performance.

Purpose

This option causes the JIT compiler to run with a subset of optimizations. The
effect is faster compilation times that improve startup time. However, longer
running applications might run slower. When the AOT compiler is active (both
shared classes and AOT compilation enabled), -Xquickstart causes all methods to
be AOT compiled. The AOT compilation improves the startup time of subsequent

Chapter 12. Reference 163

|
|
|
|

runs, but might reduce performance for longer running applications. -Xquickstart
can degrade performance if it is used with long-running applications that contain
hot methods. The implementation of -Xquickstart is subject to change in future
releases. By default, -Xquickstart is not enabled.

Another way to specify a behavior identical to -Xquickstart is to use the -client
option. These two options can be used interchangeably on the command line.

Garbage collection command-line options
There are a number of command-line options used by JVM garbage collection
operations. The options can apply to multiple garbage collection policies.

This reference section provides a list of command-line options that are new, or
changed, when IBM SDK, Java Technology Edition, Version 6 is used with an IBM
J9 2.6 virtual machine. To see a complete list of garbage collection command-line
options, see the Java 6 Diagnostics Guide, ../../../com.ibm.java.doc.diagnostics.60/
diag/appendixes/cmdline/commands_gc.html.

To see the new or changed policy options, see “Garbage collection policy options”
on page 47.

-Xgc
Use the -Xgc option to tune garbage collection.

Purpose

The -Xgc option can be used with a number of parameters to fine-tune garbage
collection. For a full list of options, see -Xgc option.

Parameters

-Xgc:minContractPercent=<n>

The minimum percentage of the heap that can be contracted at any given time.

-Xgc:maxContractPercent=<n>
The maximum percentage of the heap that can be contracted at any given time.
For example, -Xgc:maxContractPercent=20 causes the heap to contract by as
much as 20%.

scvNoAdaptiveTenure
This option turns off the adaptive tenure age in the generational concurrent GC
policy. The initial age that is set is maintained throughout the run time of the
Java virtual machine. See scvTenureAge.

scvTenureAge=<n>
This option sets the initial scavenger tenure age in the generational concurrent
GC policy. The range is 1 - 14 and the default value is 10. For more
information about tenure age, see Tenure age

-Xgc:verboseFormat
Accepted values are:
v default: The default verbose garbage collection format available in the IBM J9

2.6 virtual machine. See “Verbose garbage collection logging” on page 111.
v deprecated: The verbose garbage collection format available in earlier releases

of the J9 VM. For more information, see Verbose garbage collection logging.

164 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|
|

|

|

|

-Xgcpolicy
Use the -Xgcpolicy option to specify the garbage collection policy you want to use.

Purpose

The Balanced garbage collection policy is new. You can specify this policy by using
-Xgcpolicy:balanced. For information about the policies available, see “Garbage
collection policy options” on page 47.

Parameters

-Xgcpolicy:balanced

Specifies the balanced garbage collection policy. For information about the
garbage collection command-line options that can be used with the balanced
policy, see “Balanced Garbage Collection policy options” on page 169.

-Xgcthreads
Use the -Xgcthreads option to set the number of threads that the Garbage
Collector uses for parallel operations.

Purpose

Sets the number of threads that the Garbage Collector uses for parallel operations.
This total number of GC threads is composed of one application thread with the
remainder being dedicated GC threads. By default, the number is set to the
number of physical CPUs present, up to a maximum of 64. To set it to a different
number (for example 4), use -Xgcthreads4. The minimum valid value is 1, which
disables parallel operations, at the cost of performance. No advantage is gained if
you increase the number of threads beyond the default setting; you are
recommended not to do so.

On systems running multiple JVMs or in LPAR environments where multiple JVMs
can share the same physical CPUs, you might want to restrict the number of GC
threads used by each JVM. The restriction helps prevent the total number of
parallel operation GC threads for all JVMs exceeding the number of physical CPUs
present, when multiple JVMs perform garbage collection at the same time.

Parameters

-Xgcthreads<number>
<number> is the number of threads to use for parallel operations.

-Xmcrs
Sets an initial size for an area in memory that is reserved for compressed
references within the lowest 4 GB memory area.

Native memory OutOfMemoryError exceptions might occur when using
compressed references if the lowest 4 GB of address space becomes full,
particularly when loading classes, starting threads, or using monitors. This option
secures space for any native classes, monitors, and threads that are used by
compressed references.

-Xmcrs<mem_size>
Where <mem_size> is the initial size. You can use the -verbose:sizes option to
find out the value that is being used by the VM. If you are not using
compressed references and this option is set, the option is ignored and the
output of -verbose:sizes shows -Xmcrs0.

Chapter 12. Reference 165

|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

The following option sets an initial size of 200 MB for the memory area:
-Xmcrs200M

-Xmn
The -Xmn option is equivalent to setting both the -Xmns and -Xmnx options when
using -Xgcpolicy:gencon or -Xgcpolicy:balanced.

Purpose

When using the -Xmn option with the -Xgcpolicy:gencon or -Xgcpolicy:balanced,
there are some important considerations:
v If you set either -Xmns or -Xmnx, you cannot set -Xmn. The JVM does not start and

returns an error.
v When using -Xgcpolicy:gencon with the scavenger disabled, the -Xmn option is

ignored.

Parameters

-Xmn<size>

where <size> is an absolute value.

-Xmns
The -Xmns option sets an initial size for the new area, or eden space, depending on
the garbage collection policy specified.

Purpose

When using -Xgcpolicy:gencon, -Xmns sets the initial size of the new area. By
default, this option is set to 25% of the value of the -Xms option. If the scavenger is
disabled, the -Xmns option is ignored.

When using -Xgcpolicy:balanced, -Xmns sets the initial size of the eden space. By
default, this option uses the smaller of these values:
v The value specified for the -Xms option.
v 25% of the value specified for the -Xmx option.

For both the -Xgcpolicy:gencon and -Xgcpolicy:balanced policies, the JVM
returns an error if you try to use -Xmns with -Xmn.

To find the value of -Xmns that the JVM is using, specify the -verbose:sizes option
on the command line.

Parameters

-Xmns<size>

where <size> is an absolute value.

-Xmnx
The -Xmnx option sets a maximum size for the new area, or eden space, depending
on the garbage collection policy specified.

166 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|

|

|

Purpose

When using -Xgcpolicy:gencon, -Xmnx sets the maximum size of the new area. By
default, this option is set to 25% of the value of the -Xmx option. If the scavenger is
disabled, the -Xmnx option is ignored.

When using -Xgcpolicy:balanced, -Xmnx sets the maximum size of the eden space.
By default, this option is set to 25% of the value of the -Xmx option.

For both the -Xgcpolicy:gencon and -Xgcpolicy:balanced policies, the JVM
returns an error if you try to use -Xmnx with -Xmn.

To find the value of -Xmnx that the JVM is using, specify the -verbose:sizes option
on the command line.

Parameters

-Xmnx<size>

where <size> is an absolute value.

-Xms
The -Xms option sets the initial size of the Java heap. You can also use the -Xmo
option.

Purpose

By using the -Xms option and the -Xmx option, you can control the size of the Java
heap. The value of -Xmx must be greater than or equal to -Xms. For more
information about -Xmx, see “-Xmx.”

For information about default values, see “Default settings for the JVM” on page
171.

Parameters

-Xms<size>

where <size> is an absolute value. The minimum size is 1MB.

If scavenger is enabled, -Xms is greater than or equal to the sum value of -Xmn
and -Xmo.

If scavenger is not enabled, -Xms is equal to the value of -Xmo.

-Xms50m

The Java heap starts at 50MB and grows to the maximum default value.

-Xms20m -Xmx1024m

The Java heap starts at 20MB and grows to a maximum size of 1GB.

-Xms100m -Xmx100m

The Java heap starts at 100MB and never grows.

-Xmx
The -Xmx option sets the maximum Java heap size.

Chapter 12. Reference 167

Purpose

By using the -Xmx option and the -Xms option, you can control the size of the Java
heap. The value of -Xmx must be greater than or equal to -Xms. For more
information about -Xms, see “-Xms” on page 167.

For information about default values, see “Default settings for the JVM” on page
171.

If you are allocating the Java heap with large pages, read the information provided
in the“-Xlp” on page 146 topic.

Parameters

-Xmx<size>

where <size> is an absolute value.

-Xmx256m

The Java heap starts at the default initial value and grows to a maximum of
256MB.

-Xms20m -Xmx1024m

The Java heap starts at 20MB and grows to a maximum size of 1GB.

-Xms100m -Xmx100m

The Java heap starts at 100MB and never grows.

-Xnuma
Use the -Xnuma option to turn off Non-Uniform Memory Architecture (NUMA)
awareness when using the balanced garbage collection policy.

Purpose

By default, -Xgcpolicy:balanced uses features available on NUMA-enabled
hardware and operating systems in order to improve application scalability. For
more information about NUMA, see “NUMA awareness” on page 22. However, for
workloads that do most of their work in one thread, or workloads that maintain a
full heap, turning off NUMA awareness can improve performance.

Parameters

-Xnuma:none

Turns off NUMA awareness for the balanced garbage collection policy.

-Xsoftmx
This option sets the initial maximum size of the Java heap.

Purpose

When the initial maximum size of the Java heap is set, the GC attempts to shrink
the heap to the new limit.

Parameters

-Xsoftmx<size>

To specify an initial Java heap size of 2GB, use -Xsoftmx2g.

168 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|
|

|

|
|

|

|

|

Use the -Xmx option to set the maximum heap size. Use the
com.ibm.lang.management API to alter the heap size limit between -Xms and -Xmx
at run time. By default, this option is set to the same value as -Xmx.

When a lower -Xsoftmx value is set, the GC attempts to respect the new limit.
However, the ability to shrink the heap depends on a number of factors. There is
no guarantee that a decrease in the heap size will occur. If or when the heap
shrinks below the new limit, the heap will not grow beyond that limit.

When the heap shrinks, the GC might release memory. The ability of the operating
system to reclaim and use this memory varies based on the capabilities of the
operating system.

Note: When using -Xgcpolicy:gencon, -Xsoftmx applies only to the non-nursery
portion of the heap. In some cases the heap grows above the -Xsoftmx value
because the nursery portion grows, pushing the heap size above the limit set. See
-Xmn for limiting the nursery size.

-Xtgc
You can trace garbage collection operations with the -Xtgc option. The
-Xtgc:references option is no longer available.

Purpose

The -Xtgc options turn on tracing that provides detailed information about
garbage collection operations. For a list of options that are available with IBM
SDK, Java Technology Edition, Version 6, see ../../../../
com.ibm.java.doc.diagnostics.60/diag/tools/gcpd_tracing.html. The following
section describes the changes to existing options.

Parameters

-Xtgc:references

This option, which in IBM SDK, Java Technology Edition, Version 6 shows
activity relating to reference handling during garbage collections, is no longer
available.

Balanced Garbage Collection policy options
The policy supports a number of command-line options to tune garbage collection
(GC) operations.

About the policy

The policy uses a hybrid approach to garbage collection by targeting areas of the
heap with the best return on investment. The policy tries to avoid global
collections by matching allocation and survival rates. The policy uses mark, sweep,
compact and generational style garbage collection. For more information about the
Balanced Garbage Collection policy, see “Balanced Garbage Collection policy” on
page 21. For information about when to use this policy, see “When to use the
Balanced garbage collection policy” on page 25.

You specify the Balanced policy using the -Xgcpolicy:balanced command-line
option. The following defaults apply:

Heap size
The initial heap size is Xmx/1024, rounded down to the nearest power of

Chapter 12. Reference 169

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|

2, where Xmx is the maximum heap size available. You can override this
value by specifying the -Xms option on the command line.

Command-line options

The following options can also be specified on the command line with
-Xgcpolicy:balanced:
v -Xalwaysclassgc

v -Xclassgc

v -Xcompactexplicitgc

v -Xdisableexcessivegc

v -Xdisableexplicitgc

v -Xenableexcessivegc

v -Xgcthreads<number>

v -Xgcworkpackets<number>

v -Xmaxe<size>

v -Xmaxf<percentage>

v -Xmaxt<percentage>

v -Xmca<size>

v -Xmco<size>

v -Xmine<size>

v -Xminf<percentage>

v -Xmint<percentage>

v -Xmn<size>

v -Xmns<size>

v -Xmnx<size>

v -Xms<size>

v -Xmx<size>

v -Xnoclassgc

v -Xnocompactexplicitgc

v -Xnuma:none

v -Xsoftmx<size>

v -Xsoftrefthreshold<number>

v -Xverbosegclog[:<file> [, <X>,<Y>]]

A detailed description of these command line options can be found in
../../../../com.ibm.java.doc.diagnostics.60/diag/appendixes/cmdline/
commands_gc.html.

The behavior of the following options is different when specified with
-Xgcpolicy:balanced:

-Xcompactgc
Compaction occurs when a System.gc() call is received (default). Compaction
always occurs on all other collection types.

-Xnocompactgc
Compaction does not occur when a System.gc() call is received. Compaction
always occurs on all other collection types.

The following options are ignored when specified with -Xgcpolicy:balanced:

170 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

v -Xconcurrentbackground<number>

v -Xconcurrentlevel<number>

v -Xconcurrentslack<size>

v -Xconmeter:<soa | loa | dynamic>

v -Xdisablestringconstantgc

v -Xenablestringconstantgc

v -Xgc:splitheap (Windows 32-bit only)
v -Xloa

v -Xloainitial<percentage>

v -Xloamaximum<percentage>

v -Xloaminimum<percentage>

v -Xmo<size>

v -Xmoi<size>

v -Xmos<size>

v -Xmr<size>

v -Xmrx<size>

v -Xnoloa

v -Xnopartialcompactgc

v -Xpartialcompactgc

A detailed description of these command line options can be found in
../../../../com.ibm.java.doc.diagnostics.60/diag/appendixes/cmdline/
commands_gc.html.

Default settings for the JVM
This appendix shows the default settings that the JVM uses. These settings affect
how the JVM operates if you do not apply any changes to its environment. The
tables show the JVM operation and the default setting.

These tables are a quick reference to the state of the JVM when the JVM is first
installed. The last column shows how the default setting can be changed:

c The setting is controlled by a command-line parameter only.

e The setting is controlled by an environment variable only.

ec The setting is controlled by a command-line parameter or an environment
variable. The command-line parameter always takes precedence.

JVM setting Default Setting
affected by

Javadump Enabled ec

Heapdump Disabled ec

System dump Enabled ec

Snap traces Enabled ec

Verbose output Disabled c

Boot classpath search Disabled c

JNI checks Disabled c

Remote debugging Disabled c

Chapter 12. Reference 171

JVM setting Default Setting
affected by

Strict conformance checks Disabled c

Quickstart Disabled c

Remote debug info server Disabled c

Reduced signaling Disabled c

Signal handler chaining Enabled c

Classpath Not set ec

Class data sharing Disabled c

Accessibility support Enabled e

JIT compiler Enabled ec

AOT compiler (AOT is not used by the JVM unless
shared classes are also enabled)

Enabled c

JIT debug options Disabled c

Java2D max size of fonts with algorithmic bold 14 point e

Java2D use rendered bitmaps in scalable fonts Enabled e

Java2D freetype font rasterizing Enabled e

Java2D use AWT fonts Disabled e

JVM setting AIX IBM i Linux Windows z/OS Setting
affected by

Default locale None None None N/A None e

Time to wait before starting
plug-in

N/A N/A Zero N/A N/A e

Temporary directory /tmp /tmp /tmp c:\temp /tmp e

Plug-in redirection None None None N/A None e

IM switching Disabled Disabled Disabled N/A Disabled e

IM modifiers Disabled Disabled Disabled N/A Disabled e

Thread model N/A N/A N/A N/A Native e

Initial stack size for Java Threads
32-bit. Use: -Xiss<size>

2 KB 2 KB 2 KB 2 KB 2 KB c

Maximum stack size for Java
Threads 32-bit. Use: -Xss<size>

256 KB 256 KB 256 KB 256 KB 256 KB c

Stack size for OS Threads 32-bit.
Use -Xmso<size>

256 KB 256 KB 256 KB 32 KB 256 KB c

Initial stack size for Java Threads
64-bit. Use: -Xiss<size>

2 KB N/A 2 KB 2 KB 2 KB c

Maximum stack size for Java
Threads 64-bit. Use: -Xss<size>

512 KB N/A 512 KB 512 KB 512 KB c

Stack size for OS Threads 64-bit.
Use -Xmso<size>

256 KB N/A 256 KB 256 KB 256 KB c

Initial heap size. Use -Xms<size> 4 MB 4 MB 4 MB 4 MB 4 MB c

172 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

JVM setting AIX IBM i Linux Windows z/OS Setting
affected by

Maximum Java heap size. Use
-Xmx<size>

Half the
available
memory
with a
minimum
of 16 MB
and a
maximum
of 512 MB

2 GB Half the
available
memory
with a
minimum
of 16 MB
and a
maximum
of 512 MB

Half the
available
memory
with a
minimum
of 16 MB
and a
maximum
of 512 MB.
See note.

Half the
available
memory
with a
minimum
of 16 MB
and a
maximum
of 512 MB

c

Note: This change is specific to the IBM J9 2.6 virtual machine. For versions of the
IBM SDK, Java Technology Edition, Version 6 that contain an IBM J9 2.4 virtual
machine, the value of -Xmx for the Windows JVM is half the physical memory. The
minimum value is 16 MB and the maximum value is 2 GB.

“Available memory” is defined as being the smallest of two values:
v The real or “physical” memory.
v The RLIMIT_AS value.

Known issues and limitations
Known issues and limitations.

IBM SDK for Linux fails on Red Hat Enterprise Linux (RHEL) V4

When running the IBM J9 2.6 virtual machine on RHEL 4, the JVM fails, generating
a core dump. The failure occurs because this version of the JVM is not supported
on RHEL 4. For information about the supported operating systems, see Chapter 4,
“Hardware and software requirements,” on page 31.

Chinese, Japanese, or Korean characters are not displayed
properly in GUI applications on RHEL 6

This problem occurs when using the Motif AWT. The problem has the effect that
Chinese, Japanese, or Korean characters are not displayed properly in GUI
applications.

The workaround is to use XAWT instead of Motif AWT.

Position for ibus composition window is incorrect on RHEL 6

This problem occurs when using the ibus input method. The effect is that the Input
Method Editor (IME) composition window is not displayed under the cursor
position. An additional effect is that the composition window does not follow the
xterm window if it is moved.

This problem only affects IBM POWER and s390 platforms.

If you encounter this problem, contact Red Hat for further information.

Chapter 12. Reference 173

|
|
|
|
|
|
|
|
|
|

|
|
|
|

IBM SDK for Linux fails on SUSE Linux Enterprise Server (SLES)
V9

When running the IBM J9 2.6 virtual machine on SLES 9, the JVM fails, generating
a core dump. The failure occurs because this version of the JVM is not supported
on SLES 9. For information about the supported operating systems, see Chapter 4,
“Hardware and software requirements,” on page 31.

IBM SDK for Windows fails on Windows 2000 Server

When running the IBM J9 2.6 virtual machine on Windows 2000 server, the JVM
fails, generating a core dump. The failure occurs because this version of the JVM is
not supported on Windows 2000 server. For information about the supported
operating systems, see Chapter 4, “Hardware and software requirements,” on page
31.

The methods setReadOnly() and setWritable(false) do not work
on Windows directories

From Service Refresh 1, if you use these methods on a directory on the Windows
operating system, they return the value false.

Note: In the same situation in earlier releases, these methods set the DOS
read-only attribute to prevent the directory from being deleted. However, this
behaviour does not make the directory read-only, therefore the only changes in
behavior are that the methods now return the value false, and the read-only
attribute is not set.

Chinese characters stored as ? in an Oracle database

When you configure an Oracle database to use the ZHS16GBK character set, some
Chinese characters or symbols that are encoded with the GBK character set are
incorrectly stored as a question mark (?). This problem is caused by an
incompatibility of the GBK undefined code range Unicode mapping between the
Oracle ZHS16GBK character set and the IBM GBK converter. To fix this problem,
use a new code page, MS936A, by including the following system property when
you start the JVM:
-Dfile.encoding=MS936A

For IBM WebSphere Application Server users, this problem might occur when web
applications that use JDBC configure Oracle as the WebSphere Application Server
data source. To fix this problem, use a new code page, MS936A, as follows:
1. Use the following system property when you start the JVM:

-Dfile.encoding=MS936A

2. Add the following lines to the WAS_HOME/properties/converter.properties file,
where WAS_HOME is your WebSphere Application Server installation directory.
GBK=MS936A
GB2312=MS936A

Incorrect value for Windows 8.1 and Windows 10 in the java
-version output

The executable files in this release do not contain the manifest information that is
required to properly display the Windows version information in the output from
the java -version command. Windows 8.1 and Windows 10 are incorrectly

174 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

|
|

|
|

|
|
|
|
|

|

reported as Windows 8.

Chapter 12. Reference 175

176 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

Notices

This information was developed for products and services offered in the US. This
material might be available from IBM in other languages. However, you may be
required to own a copy of the product or product version in that language in order
to access it.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may
not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 2011, 2017 177

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

The performance data discussed herein is presented as derived under specific
operating conditions. Actual results may vary.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as follows:

178 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

Intel, Intel logo, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel
Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks of Intel Corporation
in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following
terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM
website.

Personal use

You may reproduce these publications for your personal, noncommercial use
provided that all proprietary notices are preserved. You may not distribute, display
or make derivative work of these publications, or any portion thereof, without the
express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make
derivative works of these publications, or reproduce, distribute or display these
publications or any portion thereof outside your enterprise, without the express
consent of IBM.

Notices 179

http://www.ibm.com/legal/us/en/copytrade.shtml

Rights

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see: (i) IBM’s Privacy Policy at http://www.ibm.com/privacy ; (ii)
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details (in
particular, the section entitled “Cookies, Web Beacons and Other Technologies”);
and (iii) the “IBM Software Products and Software-as-a-Service Privacy Statement”
at http://www.ibm.com/software/info/product-privacy.

180 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

Index

Special characters
-Dcom.ibm.UseCLDR16 138
-Xcheck 140
-Xcheck;jni 142
-Xcheck:memory 142
-Xcompressedrefs 144
-Xconcurrentlevel 144
-Xgc 164
-Xgcpolicy 47, 165
-Xgcthreads 165
-Xlockword 146
-Xlog 145
-Xlp 146
-Xmnx 167
-Xms 167
-Xmx 168
-Xnm 166
-Xnms 166
-Xnuma 168
-Xquickstart 163
-Xscdmx 149, 155
-Xscmaxjitdata 149, 160
-Xscminjitdata 150, 160
-Xshareclasses 155
-Xsoftmx 168
-Xtgc 169
-Xthr 151
-Xtune 151
-XX command-line options 153, 162
-XX:[+|-]LazySymbolResolution 153
-XX:ShareClassesEnableBCI 154, 162
-XXnosuballoc32bitmem 153
-XXsetHWPrefetch:none 154
-Xzero 151, 161

A
Allocation failure 124

B
Balanced Garbage Collection policy 169

Partial Garbage Collection 22
region age 21, 22

Balanced Garbage Collection Policy 21,
25, 48

Balanced Garbage Collector
Global Mark Phase 24

blocked thread information 80

C
cache naming

shared classes 102
cache performance

shared classes 103
Class data sharing command-line options

-Xshareclasses 155
classes modified by JVMTI agents 104

Command-line
Class data sharing command-line

options
-Xshareclasses 155

Garbage collection command-line
options

-Xgc 164
-Xgcpolicy 165
-Xgcthreads 165
-Xmnx 167
-Xms 167
-Xmx 168
-Xnm 166
-Xnms 166
-Xnuma 168
-Xsoftmx 168
-Xtgc 169

GC command-line
Balanced Garbage Collection

policy 169
JIT and AOT command-line options

-Xquickstart 163
JVM command-line

-Xcheck 140
-Xcompressedrefs 144
-Xconcurrentlevel 144
-Xlockword 146
-Xlog 145
-Xlp 146
-Xscdmx 149, 155
-Xscmaxjitdata 149, 160
-Xscminjitdata 150, 160
-Xthr 151
-Xtune 151
-XX:[+|-

]LazySymbolResolution 153
-XX:ShareClassesEnableBCI 154,

162
-XXnosuballoc32bitmem 153
-XXsetHWPrefetch:none 154
-Xzero 151, 161

system properties
-Dcom.ibm.UseCLDR16 138

command-line options
system properties 137

Command-line options 137
GC command-line options 162, 164
Shared classes command-line

options 155
context command 92, 99

D
deadlocks 75
debug properties, ORB 62
default settings, JVM 171
deploying shared classes 102
Developing applications 43
dump agents

default 67
events 66

dump agents (continued)
removing 68
system dumps 65
tool option 66
using 63

dump viewer 90
context command 92, 99
jdmpview 90, 92, 99

jextract 90

E
events

dump agents 66

G
garbage collection

Balanced Garbage Collection
Policy 21, 25, 48

Global Mark Phase 24
options 47
Partial Garbage Collection 22
region age 21, 22
Verbose garbage collection

logging 111
Allocation failure 124
Garbage collection cycle 114
Garbage collection increment 114
garbage collection

initialization 112
Garbage collection operation 117,

122, 123
stop-the-world operations 113

Garbage collection command-line options
-Xgc 164
-Xgcpolicy 165
-Xgcthreads 165
-Xmnx 167
-Xms 167
-Xmx 168
-Xnm 166
-Xnms 166
-Xnuma 168
-Xsoftmx 168
-Xtgc 169

Garbage collection cycle 114
Garbage collection increment 114
garbage collection initialization 112
Garbage collection operation 117, 122,

123
GC command-line

Balanced Garbage Collection
policy 169

GC command-line options 162, 164
Global Mark Phase 24

© Copyright IBM Corp. 2011, 2017 181

H
Heapdump 84

PHD heapdump format 84
PHD array records 87
PHD class records 89
PHD object records 86

I
IBM JVMTI extensions 126

Finding shared class caches 129
IBM JVMTI API reference 126

Querying JVM log options 127
Setting JVM log options 128

Removing a shared class cache 131

J
Java Helper API

shared classes 105, 106
JAVA_DUMP_OPTS

default dump agents 67
Javadump 70

blocked thread information 80
locks, monitors, and deadlocks

(LOCKS) 75
storage management 74
threads and stack trace

(THREADS) 76, 78
trace history 82

jdmpview 90, 92, 99
jdmpview -zip 90
jextract 90
JIT and AOT command-line options

-Xquickstart 163
JVM command-line

-Xcheck 140
-Xcompressedrefs 144
-Xconcurrentlevel 144
-Xlockword 146
-Xlog 145
-Xlp 146
-Xscdmx 149, 155
-Xscmaxjitdata 149, 160
-Xscminjitdata 150, 160
-Xthr 151
-Xtune 151
-XX:[+|-]LazySymbolResolution 153
-XX:ShareClassesEnableBCI 154, 162
-XXnosuballoc32bitmem 153
-XXsetHWPrefetch:none 154
-Xzero 151, 161

JVM command-line options 139
-XX command-line options 153, 162

JVM messages 59
JVMTI

diagnostic data 92, 126, 132, 134

L
Limitations 173
locks, monitors, and deadlocks (LOCKS),

Javadump 75

M
memory leaks

z/OS
OutOfMemoryErrors 61

monitors, Javadump 75

N
Native memory 72

O
options

command-line
system properties 137

garbage collection 47
ORB

debug properties 62
OutofMemoryError 60
OutOfMemoryErrors, z/OS 61
Overview 1

P
Partial Garbage Collection 22
Performance 29, 47
PHD array records 87
PHD class records 89
PHD object records 86
printAllStats utility

shared classes 110
printStats utility

shared classes 106
Problem determination

JVM messages 59
OutofMemoryError 60

R
Reference 137
region age 21, 22
runtime bytecode modification

classes modified by JVMTI
agents 104

shared classes 104

S
settings, default (JVM) 171
shared classes

cache naming 102
cache performance 103
deploying 102
diagnostic data 102
diagnostic output 106
Java Helper API 105, 106
printAllStats utility 110
printStats utility 106
runtime bytecode modification 104

classes modified by JVMTI
agents 104

Shared classes command-line
options 155

stop-the-world operations 113

storage management, Javadump 74
system dumps 65
system properties

-Dcom.ibm.UseCLDR16 138
command-line options 137

T
thread trace history 82
threads and stack trace (THREADS) 76,

78
TITLE and ENVINFO sections 70
tool option for dumps 66
trace

default 100
default assertion tracing 100
formatter 101

invoking 101
Java applications and the JVM 100

Tracing problems with garbage
collection 125

Troubleshooting and support
Application performance issues 59

U
Using diagnostic tools

Tracing problems with garbage
collection 125

Using the DTFJ interface 134
Using Diagnostic tools

Heapdump 84
Javadump 70

Native memory 72
TITLE and ENVINFO sections 70

Using the JVMTI 126
using dump agents 63
Using JVMTI

IBM JVMTI extensions
Finding shared class caches 129
Removing a shared class

cache 131
Using the DTFJ interface 134
Using the JVMTI 126

IBM JVMTI extensions 126

V
Verbose garbage collection logging 111

Allocation failure 124
Garbage collection cycle 114
Garbage collection increment 114
garbage collection initialization 112
Garbage collection operation 117,

122, 123
stop-the-world operations 113

W
What's new 1

First release 2
Service refresh 1 4
Service refresh 2 6
Service refresh 3 7
Service refresh 4 8

182 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

What's new (continued)
Service refresh 5 10
Service refresh 6 11
Service refresh 7 11
Service refresh 8 13
Service refresh 8 fix pack 1 14
Service refresh 8 fix pack 15 17
Service refresh 8 fix pack 2 14
Service refresh 8 fix pack 20 18
Service refresh 8 fix pack 25 18
Service refresh 8 fix pack 3 16
Service refresh 8 fix pack 30 18
Service refresh 8 fix pack 35 19
Service refresh 8 fix pack 4 16
Service refresh 8 fix pack 40 21
Service refresh 8 fix pack 7 17

X
Xcheck:jni 142

Z
z/OS

memory leaks
OutOfMemoryErrors 61

Index 183

184 IBM SDK, Java Technology Edition, Version 6, Release 0, Modification 1 Supplement

IBM®

Printed in USA

	Contents
	Chapter 1. Overview
	What's new
	First release
	Service refresh 1
	Service refresh 2
	Service refresh 3
	Service refresh 4
	Service refresh 5
	Service refresh 6
	Service refresh 7
	Service refresh 8
	Service refresh 8 fix pack 1
	Service refresh 8 fix pack 2
	Service refresh 8 fix pack 3
	Service refresh 8 fix pack 4
	Service refresh 8 fix pack 7
	Service refresh 8 fix pack 15
	Service refresh 8 fix pack 20
	Service refresh 8 fix pack 25
	Service refresh 8 fix pack 30
	Service refresh 8 fix pack 35
	Service refresh 8 fix pack 40

	Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java
	Balanced Garbage Collection policy
	Region age
	NUMA awareness
	Partial Garbage Collection
	Global Mark Phase
	When to use the Balanced garbage collection policy

	Chapter 3. Migrating from earlier IBM SDK or runtime environments
	Chapter 4. Hardware and software requirements
	Chapter 5. Installation
	Setting the path

	Chapter 6. Running Java technology applications
	Configuring large page memory allocation

	Chapter 7. Developing applications
	Chapter 8. Debugging
	Chapter 9. Performance
	Garbage collection policy options
	Tuning implications for the Balanced garbage collection policy
	Using more than one JIT compilation thread

	Chapter 10. Security
	Chapter 11. Troubleshooting and support
	Problem determination
	JVM messages
	Application performance issues
	Receiving OutOfMemoryError exceptions
	OutOfMemoryError exceptions on z/OS

	Tracing the Object Request Broker (ORB)

	Using diagnostic tools
	Using dump agents
	Using the -Xdump option
	Dump agents
	Dump events
	Default dump agents
	Removing dump agents

	Using Javadump
	TITLE, GPINFO, and ENVINFO sections
	Native memory (NATIVEMEMINFO)
	Storage Management (MEMINFO)
	Locks, monitors, and deadlocks (LOCKS)
	Threads and stack trace (THREADS)
	Shared Classes (SHARED CLASSES)

	Using Heapdump
	Portable Heap Dump (PHD) file format
	PHD object records
	PHD array records
	PHD class records

	Using the dump viewer
	Support for compressed files
	Processing system dumps
	Using the dump viewer in batch mode
	Commands available in jdmpview
	Working with dumps containing multiple JVMs

	Tracing Java applications and the JVM
	Default tracing
	Using the trace formatter

	Shared classes diagnostic data
	Deploying shared classes
	Dealing with runtime bytecode modification
	Using the Java Helper API
	Understanding shared classes diagnostic output

	Garbage Collector diagnostic data
	Verbose garbage collection logging
	Tracing problems with Balanced garbage collection

	Using the JVMTI
	IBM JVMTI extensions

	Using the DTFJ interface

	Chapter 12. Reference
	Command-line options
	System property command-line options
	-Dcom.ibm.CORBA.Debug.Component
	-Dcom.ibm.UseCLDR16
	-Dcom.ibm.xtq.processor.overrideSecureProcessing
	-Dibm.disableAltProcessor
	-Djava.util.Arrays.useLegacyMergeSort

	JVM command-line options
	-XCEEHDLR (31-bit z/OS only)
	-Xcheck
	-XcompilationThreads
	-Xcompressedrefs and -Xnocompressedrefs (64-bit only)
	-Xconcurrentlevel
	-Xjni
	-Xlog
	-Xlockword
	-Xlp
	-Xscdmx
	-Xscmaxjitdata
	-Xscminjitdata
	-Xsignal:userConditionHandler=percolate (31-bit z/OS only)
	-Xthr
	-Xtune
	-Xzero
	-XX command-line options

	Class data sharing command-line options
	-Xscdmx
	-Xshareclasses
	-Xscmaxjitdata
	-Xscminjitdata
	-Xzero
	-XX command-line options

	JIT and AOT command-line options
	-Xcodecachetotal
	-XcompilationThreads
	-Xquickstart

	Garbage collection command-line options
	-Xgc
	-Xgcpolicy
	-Xgcthreads
	-Xmcrs
	-Xmn
	-Xmns
	-Xmnx
	-Xms
	-Xmx
	-Xnuma
	-Xsoftmx
	-Xtgc
	Balanced Garbage Collection policy options

	Default settings for the JVM
	Known issues and limitations

	Notices
	Trademarks
	Terms and conditions for product documentation
	IBM Online Privacy Statement

	Index
	Special characters
	A
	B
	C
	D
	E
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

